高等数学课件详细.ppt
《高等数学课件详细.ppt》由会员分享,可在线阅读,更多相关《高等数学课件详细.ppt(206页珍藏版)》请在三一办公上搜索。
1、一、问题的提出,1.自由落体运动的瞬时速度问题,如图,取极限得,2.切线问题,割线的极限位置切线位置,播放,如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线.,极限位置即,二、导数的定义,定义,其它形式,即,关于导数的说明:,注意:,播放,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.右导数:,单侧导数,1.左导数:,三、由定义求导数,步骤:,例1,解,例2,解,例3,解,更一般地,例如,例4,解,例5,解,例6,解,四、导数的几何意义,切线方程为,法线方程为,例7,解,由导数的几何意义, 得切线斜率为,所求切线方程为,法线方程为,五、可导与连续的
2、关系,定理 凡可导函数都是连续函数.,证,连续函数不存在导数举例,例如,注意: 该定理的逆定理不成立.,例如,例如,例8,解,六、小结,1. 导数的实质: 增量比的极限;,3. 导数的几何意义: 切线的斜率;,4. 函数可导一定连续,但连续不一定可导;,5. 求导数最基本的方法: 由定义求导数.,6. 判断可导性,不连续,一定不可导.,连续,直接用定义;,看左右导数是否存在且相等.,思考题,思考题解答,练习题答案,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切
3、线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)
4、是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,一、和、差、积、商的求导法则,定理,证(3),证(1)、(2)略.,推论,二、例题分析,例1,解,例2,解,例3,解,同理可得,例4,解,同理可得,例5,解,同理可得,例6,解,三、小结,注意:,分段函数求导时, 分界点导数用左右导数求.,思考题,求曲线 上与 轴平行的切线方程.,思考题解答,令,切点为,所求切线方程为,和,练 习 题,练习题答案,一、
5、反函数的导数,定理,即 反函数的导数等于直接函数导数的倒数.,证,于是有,例1,解,同理可得,例2,解,特别地,二、复合函数的求导法则,定理,即 因变量对自变量求导,等于因变量对中间变量求导,乘以中间变量对自变量求导.(链式法则),证,推广,例3,解,例4,解,例5,解,例6,解,例7,解,三、小结,反函数的求导法则(注意成立条件);,复合函数的求导法则(注意函数的复合过程,合理分解正确使用链导法);,已能求导的函数:可分解成基本初等函数,或常数与基本初等函数的和、差、积、商.,思考题,思考题解答,正确地选择是(3),例,在 处不可导,,取,在 处可导,,在 处不可导,,取,在 处可导,,在
6、处可导,,练 习 题,练习题答案,初等函数的求导问题,1.常数和基本初等函数的导数公式,2.函数的和、差、积、商的求导法则,3.复合函数的求导法则,利用上述公式及法则初等函数求导问题可完全解决.,注意:初等函数的导数仍为初等函数.,例1,解,例2,解,小结,任何初等函数的导数都可以按常数和基本初等函数的求导公式和上述求导法则求出.,关键: 正确分解初等函数的复合结构.,思考题,幂函数在其定义域内( ).,思考题解答,正确地选择是(3),例,在 处不可导,,在定义域内处处可导,,练 习 题,练习题答案,一、高阶导数的定义,问题:变速直线运动的加速度.,定义,记作,三阶导数的导数称为四阶导数,二阶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 课件 详细
链接地址:https://www.31ppt.com/p-1870303.html