高等数学(下)无穷级数ppt课件.ppt
《高等数学(下)无穷级数ppt课件.ppt》由会员分享,可在线阅读,更多相关《高等数学(下)无穷级数ppt课件.ppt(100页珍藏版)》请在三一办公上搜索。
1、无穷级数,无穷级数,数项级数,幂级数,傅氏级数(数一),第十一章,常数项级数的概念和性质,一、常数项级数的概念,二、无穷级数的基本性质,三、级数收敛的必要条件,第一节,第十一章,一、常数项级数的概念,引例 用圆内接正多边形面积逼近圆面积.,依次作圆内接正,边形,这个和逼近于圆的面积 A .,设 a0 表示,即,内接正三角形面积,ak 表示边数,增加时增加的面积,则圆内接正,定义:,给定一个数列,将各项依,即,称上式为无穷级数,,其中第 n 项,叫做级数的一般项,级数的前 n 项和,称为级数的部分和.,次相加, 简记为,当级数收敛时, 称差值,为级数的余项.,则称无穷级数发散 .,显然,收敛 ,
2、则称无穷级数,并称 S 为级数的和,记作,例1. 讨论等比级数,(又称几何级数),( q 称为公比 ) 的敛散性.,解: 1) 若,从而,因此级数收敛 ,从而,则部分和,因此级数发散 .,其和为,2). 若,因此级数发散 ;,因此,n 为奇数,n 为偶数,从而,综合 1)、2)可知,时, 等比级数收敛 ;,时, 等比级数发散 .,则,级数成为,不存在 , 因此级数发散.,例2. 判别下列级数的敛散性:,解: (1),所以级数 (1) 发散 ;,技巧:,利用 “拆项相消” 求和,(2),所以级数 (2) 收敛, 其和为 1 .,技巧:,利用 “拆项相消” 求和,二、无穷级数的基本性质,性质1.
3、若级数,收敛于 S ,则各项,乘以常数 c 所得级数,也收敛 ,说明: 级数各项乘以非零常数后其敛散性不变 .,即,其和为 c S .,性质2. 设有两个收敛级数,则级数,也收敛, 其和为,说明:,(2) 若两级数中一个收敛一个发散 , 则,必发散 .,但若二级数都发散 ,不一定发散.,例如,(1) 性质2 表明收敛级数可逐项相加或减 .,性质3.,在级数前面加上或去掉有限项, 不会影响级数,的敛散性.,性质4.,收敛级数加括弧后所成的级数仍收敛于原级数,的和.,推论: 若加括弧后的级数发散, 则原级数必发散.,注意: 收敛级数去括弧后所成的级数不一定收敛.,但,发散.,例如,,三、级数收敛的
4、必要条件,性质5、设收敛级数,则必有,可见: 若级数的一般项不趋于0 , 则级数必发散 .,例如,其一般项为,不趋于0,因此这个级数发散.,注意:,并非级数收敛的充分条件.,例如, 调和级数,虽然,但此级数发散 .,事实上 , 假设调和级数收敛于 S , 则,但,矛盾!,所以假设不真 .,二、交错级数及其审敛法,三、绝对收敛与条件收敛,第二节,一、正项级数及其审敛法,常数项级数的审敛法,第十一章,一、正项级数及其审敛法,若,定理 1. 正项级数,收敛,部分和序列,有界 .,则称,为正项级数 .,定理2 (比较审敛法),设,且存在,对一切,有,(1) 若强级数,则弱级数,(2) 若弱级数,则强级
5、数,则有,收敛 ,也收敛 ;,发散 ,也发散 .,是两个正项级数,(常数 k 0 ),例1. 讨论 p 级数,(常数 p 0),的敛散性.,解: 1) 若,因为对一切,而调和级数,由比较审敛法可知 p 级数,发散 .,发散 ,因为当,故,考虑强级数,的部分和,故强级数收敛 , 由比较审敛法知 p 级数收敛 .,时,2) 若,调和级数与 p 级数是两个常用的比较级数.,若存在,对一切,证明级数,发散 .,证: 因为,而级数,发散,根据比较审敛法可知,所给级数发散 .,例2.,定理3. (比较审敛法的极限形式),则有,两个级数同时收敛或发散 ;,(2) 当 l = 0,(3) 当 l =,设两正项
6、级数,满足,(1) 当 0 l 时,是两个正项级数,(1) 当 时,两个级数同时收敛或发散 ;,特别取,可得如下结论 :,对正项级数,(2) 当 且 收敛时,(3) 当 且 发散时,也收敛 ;,也发散 .,的敛散性.,例3. 判别级数,的敛散性 .,解:,根据比较审敛法的极限形式知,例4. 判别级数,解:,根据比较审敛法的极限形式知,定理4 . 比值审敛法 ( Dalembert 判别法),设,为正项级数, 且,则,(1) 当,(2) 当,时, 级数收敛 ;,或,时, 级数发散 .,说明: 当,时,级数可能收敛也可能发散.,例如, p 级数,但,级数收敛 ;,级数发散 .,例5. 讨论级数,的
7、敛散性 .,解:,根据定理4可知:,级数收敛 ;,级数发散 ;,例6. 讨论级数,的敛散性 .,定理5. 根值审敛法 ( Cauchy判别法),设,为正项级,则,数, 且,时 , 级数可能收敛也可能发散 .,例如 , p 级数,说明 :,但,级数收敛 ;,级数发散 .,例7. 讨论级数,的敛散性 .,例8. 讨论级数,的敛散性 .,二 、交错级数及其审敛法,则各项符号正负相间的级数,称为交错级数 .,定理6 . ( Leibnitz 判别法 ),若交错级数满足条件:,则级数,收敛 , 且其和,其余项满足,收敛,收敛,用Leibnitz 判别法判别下列级数的敛散性:,收敛,上述级数各项取绝对值后
8、所成的级数是否收敛 ?,发散,收敛,收敛,三、绝对收敛与条件收敛,定义: 对任意项级数,若,若原级数收敛, 但取绝对值以后的级数发散, 则称原级,收敛 ,数,为条件收敛 .,均为绝对收敛.,例如 :,绝对收敛 ;,则称原级,数,条件收敛 .,定理7. 绝对收敛的级数一定收敛 .,说明:上述逆定理不一定成立。,即,发散,发散,例9. 证明下列级数绝对收敛 :,证: (1),而,收敛 ,收敛,因此,绝对收敛 .,(2) 令,因此,收敛,绝对收敛.,内容小结,1. 利用部分和数列的极限判别级数的敛散性,2. 利用正项级数审敛法,必要条件,发 散,满足,比值审敛法,根值审敛法,收 敛,发 散,不定,比
9、较审敛法,用它法判别,积分判别法,部分和极限,3. 任意项级数审敛法,为收敛级数,Leibniz判别法:,则交错级数,收敛,概念:,绝对收敛,条件收敛,例1、(06,一,三),若,则级数( ),A、,B、,C、,D、,例2、(05,三)设,若,则下列结论正确的是( ),A、,B、,C、,D、,第三节,一、函数项级数的概念,二、幂级数及其收敛性,三、幂级数的运算,幂级数,第十一章,一、 函数项级数的概念,设,为定义在区间 I 上的函数项级数 .,对,若常数项级数,敛点,所有收敛点的全体称为其收敛域 ;,若常数项级数,为定义在区间 I 上的函数, 称,收敛,发散 ,所有,为其收,为其发散点,发散点
10、的全体称为其发散域 .,为级数的和函数 , 并写成,若用,令余项,则在收敛域上有,表示函数项级数前 n 项的和, 即,在收敛域上, 函数项级数的和是 x 的函数,称它,例如, 等比级数,它的收敛域是,它的发散域是,或写作,又如, 级数,级数发散 ;,所以级数的收敛域仅为,有和函数,二、幂级数及其收敛性,形如,的函数项级数称为幂级数,其中数列,下面着重讨论,例如, 幂级数,为幂级数的系数 .,即是此种情形.,的情形, 即,称,收敛,发散,定理 1. ( Abel定理 ),若幂级数,则对满足不等式,的一切 x 幂级数都绝对收敛.,反之, 若当,的一切 x , 该幂级数也发散 .,时该幂级数发散 ,
11、则对满足不等式,幂级数在 (, +) 收敛 ;,由Abel 定理可以看出,中心的区间.,用R 表示幂级数收敛与发散的分界点,的收敛域是以原点为,则,R = 0 时,幂级数仅在 x = 0 收敛 ;,R = 时,幂级数在 (R , R ) 收敛 ;,(R , R ) 加上收敛的端点称为收敛域.,R 称为收敛半径 ,,在R , R ,可能收敛也可能发散 .,外发散;,在,(R , R ) 称为收敛区间.,定理2. 若,的系数满足,1) 当 0 时,2) 当 0 时,3) 当 时,则,的收敛半径为,说明:据此定理,对端点 x =1,的收敛半径及收敛域.,解:,对端点 x = 1, 级数为交错级数,收
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 无穷 级数 ppt 课件
链接地址:https://www.31ppt.com/p-1870278.html