选修曲线的参数方程ppt课件.ppt
《选修曲线的参数方程ppt课件.ppt》由会员分享,可在线阅读,更多相关《选修曲线的参数方程ppt课件.ppt(34页珍藏版)》请在三一办公上搜索。
1、一架救援飞机在离灾区地面500m高处100m/s的速度作水平直线飞行。为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?,即求飞行员在离救援点的水平距离多远时,开始投放物资?,如图,建立平面直角坐标系。,因此,不易直接建立x,y所满足的关系式。,x表示物资的水平位移量,y表示物资距地面的高度,,由于水平方向与竖直方向上是两种不同的运动,,物资投出机舱后,它的运动由下列两种运动合成:,(1)沿ox作初速为100m/s的匀速直线运动;,(2)沿oy反方向作自由落体运动。,在这个运动中涉及到哪几个变量?这些变量之间有什么关系?,t时刻,水平位移为x=100t,离地面
2、高度y,即:,y=500-gt2/2,,物资落地时,应有y=0,,得x10.10m;,即500-gt2/2=0,解得,t10.10s,,因此飞行员在距离救援点水平距离约为1010米时投放物资,可以使其准确落在指定位置。,参数方程的概念:,一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变数 t 的函数,那么方程组就叫做这条曲线的参数方程,联系变数 x, y 的变数 t 叫做参变数,简称参数。,并且对于 t 的每一个允许值,由方程组所确定的点 M(x, y) 都在这条曲线上,,参数是联系变数x, y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数
3、。,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。,例1: 已知曲线C的参数方程是 (为参数) (1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。,解:(1)把点M1的坐标(0,1)代入方程组,解得t=0,所以M1在曲线上,把点M2的坐标(5,4)代入方程组,得到,这个方程无解,所以点M2不在曲线C上,(2)因为点M3(6,a)在曲线C上,所以,解得t=2, a=9 所以,a=9.,B,A(1,4); B (25/16, 0) C(1, -3) D(25/16, 0),D,A(2,7); B(1/3, 2/3) C(1
4、/2, 1/2) D(1,0),(1)由题意可知: 1+2t=5,at2=4;a=1,t=2;,代入第二个方程得: y=(x-1)2/4,(4)证明这个参数方程就是所由于的曲线的方程.,参数方程求法:,(1)建立直角坐标系, 设曲线上任一点P坐标为;,(2)选取适当的参数;,(3)根据已知条件和图形的几何性质, 物理意义, 建立点P坐标与参数的函数式;,圆的参数方程,复习:,1.圆的标准方程是什么?它表示怎样的圆?,(x-a)2+(y-b)2=r2,表示圆心坐标为 (a,b),半径为r的圆。,2.三角函数的定义?,3.参数方程的定义?,一般地,在取定的坐标系中,如果曲线上任意一点的坐标x,y都
5、是某个变数t的函数,即,探求:圆的参数方程,点P在P0OP的终边上,如图,设O的圆心在原点,半径是r.与x 轴正半轴的交点为P0 ,圆上任取一点P,若OP0 按逆时针方向旋转到OP位置所形成的角P0 OP =,求P点的坐标。,根据三角函数的定义得,解:,设P(x,y),(1),我们把方程组(1)叫做圆心为原点、半径为r的圆的参数方程。 其中参数表示OP0到OP所成旋转角, 。,M(x, y),圆周运动中,当物体绕定轴作匀速运动时,物体上的各个点都作匀速圆周运动,,怎样刻画运动中点的位置呢?,那么=t. 设|OM|=r,那么由三角函数定义,有,如果在时刻t,点M转过的角度是,坐标是M(x, y)
6、,,即,这就是圆心在原点O,半径为r 的圆的参数方程,参数 t 有物理意义(质点作匀速圆周运动的时刻),考虑到=t,也可以取为参数,于是有,圆心为原点半径为r 的圆的参数方程.,其中参数的几何意义是OM0绕点O逆时针旋转到OM的位置时,OM0转过的角度,一般地,同一条曲线,可以选取不同的变数为参数,,另外,要注明参数及参数的取值范围。,(2)圆心为(-2,-3),半径为1: _.,(x-1)2+(y+1)2=25,3.已知圆的方程是x2+y2-2x+6y+6=0,则它的参数方程为_.,练习,解: x2+y2+2x-6y+9=0化为标准方程, (x+1)2+(y-3)2=1,参数方程为,(为参数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 曲线 参数 方程 ppt 课件
链接地址:https://www.31ppt.com/p-1851692.html