平面向量基本定理及坐标表示ppt课件.ppt
《平面向量基本定理及坐标表示ppt课件.ppt》由会员分享,可在线阅读,更多相关《平面向量基本定理及坐标表示ppt课件.ppt(22页珍藏版)》请在三一办公上搜索。
1、平面向量基本定理 与坐标表示,当 时,,与 同向,,且 是 的 倍;,当 时,,与 反向,,且 是 的 倍;,当 时,,,且 .,复习:,向量共线充要条件,向量的加法:,O,B,C,A,O,A,B,平行四边形法则,三角形法则,共起点,首尾相接,O,C,A,B,M,N,O,C,A,B,M,N,平面向量基本定理:,(1)不共线的向量 叫做这一平面内所有向量 的一组基底;,(4)基底给定时,分解形式唯一.,(2)基底不唯一;,(3) 任一向量 都可以沿两个不共线的方向( 的方向)分解成两个向量( )和的形式;,说明:,1.判断下列说法是否正确:A、一个平面内只有一对不共线向量可作为表示该平面所有向量
2、的基底;B、一个平面内有无数多对不共线向量可作为表示该平面所有向量的基底;C、零向量不可为基底中的向量。,2.设O是平行四边形ABCD的两对角线交点,下列向量组:AD与AB;DA与BC;CA与DC;OD与OB。其中可作为这个平行四边形所在平面内所有向量的一组基底的是?,,,K=1,t=-3,概念辨析,答案,解析,4.若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A.e1e2,e2e1 B.2e1e2,e1 e2C.2e23e1,6e14e2 D.e1e2,e1e2,反思与感悟,考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,
3、那么平面上任意一个向量都可以由这个基底唯一线性表示出来.,例1.已知向量e1,e2,求作向量-2.5e1+3e2,作法:1、任取一点O,作,B,C,3、 就是求作的向量,例题解析,解答,解答,两个非零向量 ,,向量的夹角,与 反向,记作,与 垂直,,注意:在两向量的夹角定义中,两向量必须是同起点的,与 同向,向量的正交分解,在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便,向量的坐标表示,在平面直角坐标系内,起点不在坐标原点O的向量如何用坐标来表示?,A,o,x,y,可通过向量的平移,将向量的起点移到坐标的原点O处.,解决方案:,平面向量的坐标表示,如图, 是分别与x轴、y轴方向相同的单位向量,若以 为基底,则,其中,x叫做 在x轴上的坐标,y叫做 在y轴上的坐标,式叫做向量的坐标表示。,5在平面内有点A(x1,y1)和点B(x2,y2),向量,例2如图,用基底 ,分别表示向量 并求它们的坐标,解:由图可知,同理,,平面向量的坐标表示,A1,A,A2,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 基本 定理 坐标 表示 ppt 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-1827380.html