高数第十二章(2)常数项级数的审敛法ppt课件.ppt
《高数第十二章(2)常数项级数的审敛法ppt课件.ppt》由会员分享,可在线阅读,更多相关《高数第十二章(2)常数项级数的审敛法ppt课件.ppt(39页珍藏版)》请在三一办公上搜索。
1、二、交错级数及其审敛法,三、绝对收敛与条件收敛,第二节,一、正项级数及其审敛法,常数项级数的审敛法,机动 目录 上页 下页 返回 结束,第十二章,一、正项级数及其审敛法,若,定理 1. 正项级数,收敛,部分和序列,有界 .,若,收敛 ,部分和数列,有界,故,从而,又已知,故有界.,则称,为正项级数 .,单调递增,收敛 ,也收敛.,机动 目录 上页 下页 返回 结束,都有,定理2 (比较审敛法),设,且存在,对一切,有,(1) 若强级数,则弱级数,(2) 若弱级数,则强级数,证:,设对一切,则有,收敛 ,也收敛 ;,发散 ,也发散 .,分别表示弱级数和强级数的部分和, 则有,是两个正项级数,(常
2、数 k 0 ),因在级数前加、减有限项不改变其敛散性,故不妨,机动 目录 上页 下页 返回 结束,(1) 若强级数,则有,因此对一切,有,由定理 1 可知,则有,(2) 若弱级数,因此,这说明强级数,也发散 .,也收敛 .,发散,收敛,弱级数,机动 目录 上页 下页 返回 结束,例1. 讨论 p 级数,(常数 p 0),的敛散性.,解: 1) 若,因为对一切,而调和级数,由比较审敛法可知 p 级数,发散 .,发散 ,机动 目录 上页 下页 返回 结束,因为当,故,考虑强级数,的部分和,故强级数收敛 , 由比较审敛法知 p 级数收敛 .,时,2) 若,机动 目录 上页 下页 返回 结束,调和级数
3、与 p 级数是两个常用的比较级数.,若存在,对一切,机动 目录 上页 下页 返回 结束,证明级数,发散 .,证: 因为,而级数,发散,根据比较审敛法可知,所给级数发散 .,例2.,机动 目录 上页 下页 返回 结束,定理3. (比较审敛法的极限形式),则有,两个级数同时收敛或发散 ;,(2) 当 l = 0,(3) 当 l =,证: 据极限定义,设两正项级数,满足,(1) 当 0 l 时,机动 目录 上页 下页 返回 结束,由定理 2 可知,同时收敛或同时发散 ;,(3) 当l = 时,即,由定理2可知, 若,发散 ,(1) 当0 l 时,(2) 当l = 0时,由定理2 知,收敛 ,若,机动
4、 目录 上页 下页 返回 结束,是两个正项级数,(1) 当 时,两个级数同时收敛或发散 ;,特别取,可得如下结论 :,对正项级数,(2) 当 且 收敛时,(3) 当 且 发散时,也收敛 ;,也发散 .,机动 目录 上页 下页 返回 结束,的敛散性.,例3. 判别级数,的敛散性 .,解:,根据比较审敛法的极限形式知,例4. 判别级数,解:,根据比较审敛法的极限形式知,机动 目录 上页 下页 返回 结束,定理4 . 比值审敛法 ( Dalembert 判别法),设,为正项级数, 且,则,(1) 当,(2) 当,证: (1),收敛 ,时, 级数收敛 ;,或,时, 级数发散 .,由比较审敛法可知,机动
5、 目录 上页 下页 返回 结束,因此,所以级数发散.,时,(2) 当,说明: 当,时,级数可能收敛也可能发散.,例如, p 级数,但,级数收敛 ;,级数发散 .,从而,机动 目录 上页 下页 返回 结束,例5. 讨论级数,的敛散性 .,解:,根据定理4可知:,级数收敛 ;,级数发散 ;,机动 目录 上页 下页 返回 结束,对任意给定的正数 ,定理5. 根值审敛法 ( Cauchy判别法),设,为正项级,则,证明提示:,即,分别利用上述不等式的左,右部分, 可推出结论正确.,数, 且,机动 目录 上页 下页 返回 结束,时 , 级数可能收敛也可能发散 .,例如 , p 级数,说明 :,但,级数收
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十二 常数 级数 审敛法 ppt 课件
链接地址:https://www.31ppt.com/p-1826739.html