《水资源短缺风险评价.docx》由会员分享,可在线阅读,更多相关《水资源短缺风险评价.docx(34页珍藏版)》请在三一办公上搜索。
1、水资源短缺风险评价体系 摘要:目前,水资源短缺的问题越来越突出,而且成为制约我国社会经济可持续发展和水资源可持续利用的主要障碍,关于如何对水资源的短缺风险进行综合评价,目前没有统一定义和标准评价方法.如何建立科学的评价方法、建立一个规范化并和国际接轨的评价体系已成为一个亟待解决的重要课题.基于对水资源短缺风险评价的需要,本文以北京市为例,我们在原模糊综合评判模型的基础上改进模型.首先用层次分析法构建了北京市水资源短缺风险因子分析模型,通过计算,最终确定出导致风险的主要因子,为进一步进行风险评价奠定了基础.随后运用改进的模糊综合评判模型, 对北京市的水资源短缺程度、短缺原因及变化趋势进行了比较全
2、面的分析,对风险等级进行了划分.同时,选取了短缺性、危险性、易损性、承险性作为水资源短缺风险的评价指标,通过建立隶属函数和评价矩阵,对水资源短缺风险进行了定量评价,以最大隶属原则为依据,得出北京市水资源短缺处于较高风险,同时也为制订风险的防范措施和对策提供了理论依据.在应用模糊综合评判模型的同时,我们为了准确的确定短缺性、危险性、易损性、承险性的权重,通过发放调查问卷,采用确定权重的统计方法,即加权统计方法,得到了其权重.在用该模型分析水资源短缺风险的分析过程中,通过计算发现该方法克服了以往假设模型中条件的限制,在目前信息收集不完整、数据质量不高的情况下有着独特的优势.该模型能使评估更加客观、
3、准确、系统、有效.然后用MATLAB软件对北京市水资源状况的相关数据进行拟合,从用水量、用水结构、水资源总量几个方面对北京市未来五年水资源进行了预测,得到了可靠的预测结果.最后,在我们研究结论的基础上,提出了缓解北京市水资源短缺的对策和措施. 关键词:水资源短缺风险;模糊综合评判模型;层次分析法;预测 一、 问题重述水资源是城市形成、发展的必要条件,在自然和人类活动影响下, 城市旱涝、缺水及水环境污染现象时有发生, 水资源问题已严重阻碍了当今城市发展水资源短缺、供需的失衡始终是我国社会经济可持续发展、水资源可持续开发利用和管理保护所面临的重大问题和难题.那么如何对水资源短缺风险的主要因子进行识
4、别,以及在这些水资源短缺的风险因子中,哪些因子是主要的,这对于研究水资源短缺风险将是十分必要的,因此,对以上几个问题的分析将是必不可少的.那么能不能建立一个水资源短缺风险评价的数学模型?由此分析,对于从用水量、用水结构、水资源存量几个方面对北京市未来几年的水资源进行预测也是必要的.这样,可以给有关部门写一份研究报告,提出水资源短缺成因、水资源风险控制以及水资源保护等方面提出一点建议,来降低水资源短缺风险.二、问题分析 由于的数据属离散型,它们无法直接为数学模型所用.在统计数据中存在的人为误差,其属性变量的取值必然存在误差.基于上述原因,我们必须对数据进行处理;鉴于风险各层面的指标差异问题,我们
5、必须对数据比较分析,得到统一的评价标准,最后进行评估.因此我们需要解决以下关键问题:1.如何对水资源风险的主要因子进行识别,然后对分险因子进行重要性分析2.搜集数据,然后对数据进行分析和计算.3.在原有模糊综合评价模型的基础上,如何进行改进和变化,建立一个更好的数学评价模型,使其更好地适应水资源短缺风险的评价.三、基本假设假设一: 我们对水资源短缺风险因子指标分层是合理的假设二: 我们所列的水资源短缺风险因子指标是全面的,其他因素对水资源的短缺风险的影响忽略不计假设三: 南水北调及其它工程正常运行假设四: 没有重大的自然灾害发生如干旱等其他因素假设五: 在数据的计算过程中,加设误差在合理的范围
6、之内,对数据结果的影响可以忽略不计假设六: 所有收集到的数据均有效,即不考虑人为因素造成的无效数据假设七: 北京地区人口流动正常假设八: 风险等级是主要致险因子决定的四、符号说明: 表示项目Ci与Cj对目标的影响之比: 权重: 随机性指标: 一致性指标: 分类指标: 一致性比率: 影响力评价指标值: 分项指标值: 综合评判因素: 评判等级: 等级对综合评定所得模糊子集的隶属度: 单因素在总评定因素中所起作用的大小: 上的模糊子集: 隶属函数五、模型建立水资源短缺风险,泛指在特定的时空环境条件下,由于来水和用水两方面存在不确定性,使区域水资源系统发生供水短缺的可能性以及由此产生的损失.为了较好地
7、评价水资源短缺风险,首先,我们需要分析水资源短缺的风险因子,即分析水资源短缺的成因.5.1判定水资源短缺的主要风险因子 根据北京市水资源资料,首先通过系统定性分析,列出了可能造成北京市水资源短缺风险的各方面因素,比如说降雨量、灌溉面积、水的价格等,然后在这些因素中选出一些主要的因素,其他一些次要因素则认为对北京市水资源短缺的影响较小可以忽略不计.概括来说,这些因素主要源于以下四方面:1.环境因素;2.工业因素;3.农业因素,4.社会经济因素.通过对水资源短缺风险因素的分析,我们建立起相应的风险指标体系.该指标体系分为3 个层次,共由15个指标组成.如表1所示,表1:水资源短缺风险因子的评价指标
8、一级指标二级指标指标含义单位指标量水资源短缺风险因子环境因素A降水量A1mm463地下水资源量A2亿立方米16.2植被覆盖面积A3公顷52.6蒸发量A4mm421.1工业因素B水库容量B1亿立方米28.6工业用水量B2亿立方米7.1工业污水排放量B3亿立方米12.5工业污水处理量B4亿立方米9.8农业因素C灌溉面积C1万平方公顷4.86渠系水利覆盖率C2%80高产值农户耗水量C4%43.2社会经济因素D人口密度D1每平方公里9.37第三年产业占全市比重D2%67.5生活用水定额D3亿立方米13.03GDP水耗下降率D4%58.4根据对问题的分析,为了定量分析水资源短缺因子的重要性,我们参考已有
9、的层次分析法8,这种方法是一种将定性分析与定量分析相结合的系统分析方法.层次分析法处理问题的基本步骤简述如下:(1)确定评价目标,再明确方案评价的准则.根据评价目标、评价准则构造递阶层次结构模型.递阶层次结构模型一般分为3 层:目标层、准则层和方案层;(2)应用两两比较法构造所有的判断矩阵. 下表是建立判断矩阵的方法.表2.两两比较法的标度判断尺度具体含义975312、4、6、8 因素比因素绝对重要因素比因素重要得多因素比因素重要因素比因素稍微重要因素比因素一样重要因素因素的重要程度介于上述各数值之间对本级的要素进行两两比较来确定判断矩阵A 的元素,是要素对的相对重要性其值是由专家根据资料数据
10、以及自己的经验和价值观用判断尺度来确定判断尺度表示要素对 相对重要性的数量尺度.采用的判断尺度见(表1)根据判断尺度建立n 阶的判断矩阵:其中: , =1 ,(, )然后确定各要素的相对重要程度:(1)计算判断矩阵的特征向量,然后进行归一化处理即得到相对重要程度向量: , (5.1)(2)一致性判断.为了检验判断矩阵的一致性,根据原理,可以利用与之差来检验一致性,定义一致性计算指标为: , (5.2)其中, (5.3)为判断矩阵的最大特征值.为随机性指标,是通过构造最不一致的情况,对不同的阶比较矩阵中的元素,采取随机取数的方式进行赋值,并且对不同的取多个子样,先计算出的值,再求得其平均值,记为
11、,见表2.表 3. 随机性指标数值N1234567891011C.R.000.580.91.121.241.321.411.451.491.51当矩阵A满足一致性时,;当矩阵A不满足一致性时,一般有,因此,故在一般情况下,当时就可以认为判断矩阵具有一致性,据此而计算的值是可以接受的;若不满足,则认为判断矩阵不符合一致性要求,需要专家重新按判断尺度表进行判断,建立判断矩阵进行相应计算,直到一致性检验通过.设环境因素指标、工业因素指标、农业因素指标、社会经济因素指标权重向量分别为,现在以社会经济因素为例,对其相关二级指标进行求解:表4:社会经济因素相关指标量相关指标D1D2D3D4指标量9.376
12、7.513.0358.4(1) 求权重向量它对应的判断矩阵= 计算判断矩阵的特征向量,然后进行归一化处理即得到相对重要程度向量: , i1、2、n ; (5.4)最后得到的权重向量为:(2) 一致性检验的计算过程如下:列向量归一化A1 = 归一化按行求和 得= =4.013根据公式可得此时, ,由公式.可算得由于则可以认为判断矩阵具有一致性,据此而计算的值是可以接受的;综合上面的计算,我们得到环境因素指标、工业因素指标、农业因素指标、社会经济因素指标的4个权重向量:设环境因素指标、工业因素指标、社会经济因素指标值分别是,它们的分项指标的权重为 , , , (, ),分项指标的值分别为 , ,
13、, (, ),总值为,所以有公式 (5.5)根据这个公式及参考姜启源编的数学模型第二版1中的概念及计算原理得目标中的组合权重应该为它们相应的权向量和归一化的特征向量两两乘积之和.则对于社会经济因素来说,它的评价指标值为:同理,对于水资源分险因子的其他三个层面,可得其评价指标值为:再根据它们各自的指标值算出权重向量,最后,由公式(5.5)得到水资源短缺风险因子的评价向量:由此可以看出,环境因素指标、工业因素指标、农业因素指标、社会经济因素指标各自的重要性分别为33.6%,13.7%,5.6%,48.2%,这说明随着北京人口的增多和第三产业的不断发展,社会经济因素对水资源造成短缺的作用越来越大.人
14、口增长, 居民生活水平的提高带来的居民生活用水的迅速增长, 城市建设、环境质量的提高以及服务业的蓬勃发展造成了公共用水的增加, 共同推动了北京市生活用水迅速增长.5.2水资源短缺风险评价模型的建立基于上面的分析,我们已经得到了主要的水资源短缺风险因子,由此我们可以分析得出各风险因子与水资源短缺风险的关系,如图(1)所示.由此可以看出,水资源的短缺取决于供水和需水两方面,而这两方面都具有随机性和不确定性.因此,水资源短缺风险也具有随机性和不确定性.在进行风险评价时,要充分考虑风险的特点以及水资源系统的复杂性,要把存在风险的概率、风险出现的时间、风险造成的损失、风险解除的时间、缺水量的分布等一系列
15、因素考虑在内.因此难以用某一种指标对其进行全面描述和评价,必须从多方面的指标综合考虑.评价指标选择的原则是: (1)能集中反映缺水地区的缺水风险; (2)能集中反映缺水风险的程度; 图1.北京市水资源短缺风险因素分析(3)能反映水资源短缺风险发生后水资源系统的承受能力; (4)代表性好,针对性强,易于量化.依据上述原则,并参考文献,选取了短缺性、危险性、易损性、承险性作为水资源系统水资源短缺风险的评价指标.由此我们建立基于模糊综合评判方法的水资源短缺风险的评价模型.水资源短缺风险评价是在短缺风险分析的基础上,把短缺性、危险性、易损性、承险性综合起来考虑.借助调查问卷,以层次分析法为工具,采用模
16、糊综合评判模型对水资源短缺风险进行评价,并用改进的模糊综合评判模型对评价结果进行检验.短缺性: 指水资源系统在自身运行过程中输入主体容易受到损害的性质, 表征系统输 入主体抵抗风险的不完备性.短缺性体现在系统运行的供需不满足性以及系统已经受到损害的程度. 危险性:指在特定的时空环境条件下,水资源系统发生的非期望事件及其发生的概论并由此产生的损失. 易损性: 表征系统面临风险的潜在损害度, 即系统潜在输出抵抗风险的易损程度.承险性:水资源系统能通过自身的反馈调节来应对风险的能力.为了比较直观的说明北京市水资源短缺风险的程度,我们将其分成5级,分别叫做低风险、较低风险、中风险、较高风险和高风险,风
17、险各级别按综合分值评判,其评判标准和各级别风险的特征下表. 表5:水资源短缺风险等级划分水资源短缺风险等级风险级别水资源系统的风险特征低可以承受的风险较低较能承受的风险中边缘风险较高不可承受风险高水资源系统受到严重破坏设给定2 个有限论域和,其中代表综合评判的因素(短缺性、危险性、易损性、承险性)所组成的集合;代表评语(低、较低、中、较高、高)所组成的集合.则模糊综合评判即表示下列的模糊变换,式中为上的模糊子集.而评判结果是上的模糊子集,并且可表示为,;,.其中表示单因素 在总评定因素中所起作用大小的变量,也在一定程度上代表根据单因素评定等级的能力;为等级对综合评定所得模糊子集的隶属度,它表示
18、综合评判的结果. 1类别类别系统表征层评价指标层单位 隶属度=0.9 =0.7 =0.5 =0.3 =0.1短缺性A1环境短缺性B1COD排放超标率C1%45污水处理率C2%80 70-80 60-70 50-60 50蓄水短缺性B2地下水超采量占多年水资源均值比例C3%20水量短缺性B3耗水率C4%80 60-80 40-60 20-40 20污水未处理率C5%50危险性 A2水量B4人均水资源占有量C6/人2000年均降水量C7mm/年800 700-800 600-700 400-600 400环境易损性B5地下水超采面积率C8%20用水占需水比例C9%50 40-50 30-40 20
19、-30 20易损性A3社会经济易损性B6人均水资源占世界缺水线的差值率C10%40缺水GDP损害度C11%40适应性B7节水量占缺水量得比例C12%100 80-100 60-80 40-60 40承险性 A4应急性B8供水管道长度C13km14500库容量C14亿立方米40 35-30 30-35 25-30 80 70-80 60-70 50-60 50非常规用水比例C16%40表6:水资源短缺指标分析表关系矩阵可表示为式中: 表示因素的评价对等级的隶属度,因而矩阵中第行为对第个因素 的单因素评判结果.在评价计算中代表了各个因素对综合评判重要性的权系数,因此满足;同时,模糊变换也即退化为普
20、通矩阵计算,即取合成运算,即用模型计算,可得综合评判.通过模糊综合评判模型,我们又对水资源短缺风险进行了分析,建立起相应的风险指标体系.该指标体系分为3 个层次,共由16个指标组成.如表6所示,上述权系数的确定可用层次分析法(AHP)得到.由上述分析可以看出,评价因素集对应评语集,而评判矩阵中 即为某因素对应等级的隶属度,其值可根据各评价因素的实际数值对照各因素的分级指标推求.六、模型的求解北京市水资源短缺风险的模糊综合评判模型求解: (1)因素集,其中指短缺性,指危险性,指易损性,指承险性. (2)评判集,其中:低;:较低;:中;:较高;:高. (3)单因素评判.依据我们的调查问卷的数据,利
21、用层次分析法,我们计算出了短缺性对水资源短缺风险的影响程度=(0.15 0.15 0.3 0.35 0.15) ,危险性对水资源短缺风险的影响程度=(0.15 0.3 0.3 0.15 0.1 ) ,易损性对水资源短缺风险的影响程度=(0.2 0.35 0.35 0.05 0.05)承险性对水资源短缺风险的影响程度=(0.2 0.4 0.2 0.15 0.05),便得到(0.15 0.15 0.3 0.35 0.15) (0.15 0.3 0.3 0.15 0.1 ) (0.2 0.35 0.35 0.05 0.05) (0.2 0.4 0.2 0.15 0.05)即得到一个到得模糊映射由此单
22、因素评判可诱导出模糊关系,即得单因素评判矩阵 (4)综合评判.同样利用层次分析法的到短缺性、危险性、易损性、承险性关于水资源短缺风险的权重分配.如下图2:图2 取合成用算,即用模型:(主因素决定型), 计算可求得综合评判为 这表明水资源短缺危险程度较高,需要政府相关部门及全人类的高度注视.下面再用模糊综合评价的另一种方法即最大隶属原则,对北京市水资源短缺风险进行评价.我们将评语级分为5个级别,各评价因素分级指标见下表: 表7:水资源短缺风险评价分级指标水资源短缺风 险(短缺性)(危险性)(易损性)(承险性)(低)0.2000.2000.2000.800(较低)0.2000.4000.2000.
23、4000.2000.4000.6010.800(中)0.4010.6000.4010.6000.4010.6000.4010.600(较高)0.6010.8000.6010.8000.6010.8000.2000.400(高)0.8000.8000.8000.200我们在整理、分析调查问卷中用1表示水资源短缺低风险,2表示水资源短缺较低风险,3表示水资源短缺中风险,4表示水资源短缺较高风险,5表示水资源短缺高风险.通过求每个风险因子的风险等级的平均值,就得到短缺性、危险性、易损性、承险性的等级划分图如下表: 表8:水资源短缺风险指标等级划分类别低风险较低风险中风险较高风险高风险短缺性0.60.
24、244.62危险性1.83.63.61.81.2易损性23.53.50.50.5承险性1.63.21.61.30.4依据上表可构造短缺性、危险性、易损性、承险性隶属函数分别为: 将0.6带入,于是类似地,可算出其他指标的隶属度,得到单因素评价矩阵为 用(主因素突出型)计算可求得综合评判为 对进行归一化,得 按最大隶属度原则北京市水资源风险处于较高风险等级,可见水资源供需状况极度危险. 七、未来五年水资源状况的预测与分析根据对北京统计年鉴4中有关水资源情况的分析,本文采取趋势预测法:基于历史统计数据的分析,选取一定长度的、具有可靠性、一致性和代表性的统计数据作为样本,进行回归分析,并以相关性显著
25、的回归方程进行趋势外延. 为了使数据更加精确,采取了Excel软件进行数据的描点作图(图3图7),从图表中可以看出北京市水资源在各个阶段的总体变化趋势,为了对未来的水资源数据进行预测,又用MATLAB软件进行了数据拟合,得到了拟合曲线的函数表达式. 图3:总用水变化趋势 图4:农业用水变化趋势 图5:工业用水变化趋势 图6:第三产业及生活等其他用水变化趋势图7:水资源总量变化趋势以上是用Excel软件对19792008年从总用水量、农业用水量、工业用水量、第三产业及生活等其他用水量和水资源总量来描点,对它们总体的变化趋势进行分析,进而用MATLAB软件对它们未来五年的水资源情况进行预测.在MA
26、TLAB程序中,为了使拟合函数的表达式的误差最小,避免大数运算带来的截断误差,我们用130分别代表19792008(年),所用的程序如下(以工业用水数据为例):Format long; x=1:1:30y=38.23,26,24,36.6,34.7,39.31,38,27.03,38.66,39.18,21.55,35.86,42.29,22.44,19.67,45.42,30.34,45.87,22.25,37.7,14.22,16.86,19.2,16.1,18.4,21.4,23.2,24.5,23.8,34.2plot(x, y,k.,markersize, 25)p4=polyfit
27、(x,y,4)t=1:1:30s=polyval (p4, t)hold onplot (t, s,r-,linewidth,2)plot (t, s,b-,linewidth,2)grid;a=polyfit(t,y,4)(1) 总用水量趋势预测所得四次多项式拟合曲线的函数表达式(这里用x表示年份,y表示水量,下同)为:=0.00044588652621-0.0304696800778+0.67862309754160 -5.67157995768602+55.71015915119385 (1)(3) 农业用水量趋势预测所得四次多项式拟合曲线的函数表达式为: =0.000171194279
28、89-0.01317566138966+0.33904269110566 -3.71699485945023+34.97676294331482 (2) (3)工业用水趋势预测所得四次多项式拟合曲线的函数表达式为: = 0.00013215070897-0.00832866640558+ 0.15155240236764 -0.93093484246700+ 14.92019746536991 (3)(4)第三产业及生活等其他用水趋势预测所得四次多项式拟合曲线的函数表达式为: =0.00014035806804-0.00881793151789+ 0.18477810891512 -0.998
29、97078802151+5.78234428725811 (4)(5)水资源总量趋势预测所得三次多项式拟合曲线的函数表达式为: = 0.00567170437536-0.27452014650985+3.19607030989301+ 25.33436708629838 (5) 由以上各函数表达式,将未来五年的年数对应在函数中,由于在前面我们用130来代表19792008年来减少误差,因此,这里用3137来代表20092015年,将其带入函数中,可以算得到未来五年内各水资源的数据,如下表所示: 表9 未来五年北京市水资源状况预测 单位:亿立方米年份总用水量农业用水工业用水第三产业及生活等其他用
30、水水资源总量200936.111311.1555.627719.31463829.564430201038.245010.9825.976221.258184132.350395201141.365911.0626.652923.603235.676287201245.6386511.4997.710826.4063939.57613201351.2390912.20119.206329.72756244.08397201458.353513.381211.198633.6300649.2338201567.19715.056213.750638.1805855.05972通过对以上数据的分析
31、可以得到北京的用水量、用水结构、水资源存量的相关信息.7.1.用水量变化分析 1980年到1990年, 北京市用水总量呈明显下降趋势, 年均减少总用水量0.087亿立方米.进入1990年以来, 年用水总量间的变幅则急剧缩小, 介于稳定的40.01亿立方米到46.43立方米之间,今后五年内将稳步上升,具体数据如表8所示7.2.用水结构变化分析北京市用水结构及其变化大体可按工、农业和第三产业及生活等其他用水等3个方面进行分析.(1)农业用水比重缩小, 呈继续缩减态势自1980年以来, 农业用水作为北京市的用水大户, 其用水量的减少趋势最为明显, 由1980年的31.83亿立方米降至2000 年的1
32、6.49亿立方米, 1980 年1990 年、1990年2000年和1996年2000 年年均减少量分别为0.247亿立方米、0.477亿立方米和0.638亿立方米.农业用水占全市总用水量的比重也呈下降趋势 由1980年的58.13% 降为2000年的40.82% ,近五年则平均以0.946% 的份额下降, 其下降趋势仍无停止迹象.(2)工业用水呈减少趋势, 近年趋于稳定工业用水亦呈负增长态势, 1980年用水量和占总用水量比重中分别为13.5亿立方米及32.08%, 到2000年下降为10.52亿立方米和26.04%, 年均递减0.142亿立方米,但近年来这种下降趋势已明显减缓.1997年2
33、000年工业用水总量介于10.5亿立方米11.0亿立方米之间, 变幅为4.5%.未来五年用水量将逐步上升,但幅度会越来越小.(3)第三产业及生活等其他用水持续增加,与工、农业用水情况相反, 城市及生活用水量从1980年的4.94亿立方米迅速递增为2000年的13.39 亿立方米,所占比重从9.79% 增长到33.14%,而且不同阶段的年均增加量呈逐步上升趋势.1980年1990年、1990年2000年和1996 年2000年城市及生活用水量年均增加量分别为0.265亿立方米、0.577亿立方米 和0.5亿立方米,相应占总用水量比重的年均增加值分别为0.666%、1.456%和1.588% .未
34、来五年持续增加的状况不变.预计未来北京市用水结构总体趋势为:总用水量不会发生大的变化, 工业用水基本保持稳定或略有增加, 农业用水量和占总用水量的比重仍将呈下降趋势, 生活用水量与比重将持续递增.7.3水资源存量变化分析水资源总量先呈减少趋势然后逐步上升, 水资源总量从1980年和1990年分别为26亿立方米和35.86亿立方米,呈上升状况,1990年2000水资源总量从35.86亿立方米减少到16.86亿立方米,进入2000年以后,由数据可知,水资源总量又稳步上升,在今后五年里,如果没有其他因素的干扰,水资源总量会逐步上升,但上升的幅度会越来越小.八、模型的评价与改进 虽然,算子有很好的代数
35、性质,但也存在着缺陷,它常常出现综合评判的结果不易分辨的情况,因此,模型需要改进,下面介绍改进数学模型的方法,即将原模型中的算子改用其他算子.模型:综合评判的着眼点是考虑主要因素,其他因素对结果影响不大,为了避免出现决策结果不易分辨的情况,以下对模糊综合评判决策模型进行改进. 模型:(主因素突出型)计算可求得综合评判为 对进行归一化,得 通过观察,表明水资源短缺危险程度较高,这与模型:的结果是一致的,即表明水资源短缺风险突出,其水资源开采、利用、再生等治理迫在眉睫.但为了避免权重与主要因素有关而忽略次要因素,我们还可以对其进行改进. 模型:(主因素突出型)这里的为有界和,即计算可求得综合评判为
36、 我们能明显的看出水资源短缺危险程度较高,这与模型:和模型:的结果是一致的,即表明水资源短缺风险突出,是不能被忽略的.模型:在实际应用中,主因素(权重最大的因素)在综合评价中起决定作用,为了避免其带来的负面影响,我们用另外一种模型即模型进行检验. 模型:(加权平均模型)计算可求得综合评判为 模型对所有因素以权重大小均衡兼顾,适用于考虑各因素起作用的情况.从模型可以检验出前三种模型在数据分析及用算过程中是适合的,并没有带来较大的偏差.九、结论(1)本文基于模糊综合评判模型建立了水资源短缺风险评价模型,同时考虑到水资源系统的模糊不确定性,可对水资源短缺风险的影响程度给予综合评价.社会经济因素是北京
37、市水资源短缺的主要致险因子.(2)由模糊综合评价模型可以得出北京市水资源短缺风险处于较高水平,根据我们建立的北京市水资源系统风险评价指标体系及评价模型, 对北京市进行水资源系统风险评价, 得出北京市水资源短缺风险级别为较高风险, 从而为北京市水资源系统管理及水资源系统风险控制提供依据.对水资源采取有效的风险管理措施已刻不容缓. (3)北京市用水结构变化总的来说呈现以下趋势: 总用水量趋于平稳, 工业用水和农业用水从量上和占总用水量的比重上都有所下降, 而生活用水却迅速递增.下面是给北京市水资源管理相关部门的研究报告.北京市水资源短缺研究报告北京市水行政主管部门 : 由于北京市水资源短缺已经成为
38、影响和制约首都社会和经济发展的主要因素.我们对北京市水资源资料的分析,对水资源短缺的风险因子进行了重要性分析.概括来说,造成水资源短缺的成因主要源于以下四方面:1.环境因素;2.工业因素;3.农业因素,4.社会经济因素.在这些因素中,社会经济因素对水资源造成短缺的作用越来越大,随着人口的增长, 居民生活水平的提高带来的居民生活用水的迅速增长, 城市建设、环境质量的提高以及服务业的蓬勃发展造成了公共用水的增加, 共同推动了北京市生活用水迅速增长. 经过我们对北京市水资源状况分析 , 北京市用水结构变化总的来说呈现以下趋势: 总用水量趋于平稳, 工业用水和农业用水从量上和占总用水量的比重上都有所下
39、降, 而生活用水却迅速递增; 预计今后境内自产水量变化不大.地表水资源可随调蓄和联合调度能力增加而有所增加, 但地下水资源已多年超采, 能够保持现有资源量不使地下水位继续下降已是最好的结果.密云、官厅两大水库目前和今后很长一段时间内都将是北京主要的水源, 但来水减少之势不可逆转.现在北京的出境水大部分是污水, 深度开发利用这部分水资源, 使之成为可能利用的新水源,是缓解北京市严重缺水的重要措施.因此, 北京市未来的水资源状况不容乐观, 在没有外来水源引入的条件下,供水量不会发生明显的变化.由以上原因北京市水行政主管部门应该从以下几个方面做出改善,来保护水资源以及降低水资源的短缺风险.(1)降低水资源短缺风险1、对北京市的水资源短缺风险必须进行调控,这些调控措施主要有需水管理和供水管理.需水管理的核心是抑制水资源需求的过度膨胀,促进水资源的可持续利用,节水防污型社会建设是需水管理中最重要的系统工程之一;供水管理措施主要有提供污水处理率和污水利用率、对当地水资源进行挖潜、增加雨洪利用、增加海水利用等等.2、南水北调工程是解决北京市水资源短缺风险的根本措施.如果将南水北调工程加入到风险分析模型中,2010 年北京市的水
链接地址:https://www.31ppt.com/p-1808989.html