普通化学 第6章 无机化合物课件.ppt
《普通化学 第6章 无机化合物课件.ppt》由会员分享,可在线阅读,更多相关《普通化学 第6章 无机化合物课件.ppt(99页珍藏版)》请在三一办公上搜索。
1、19.12.2022,.,1,第6章 无机化合物,19.12.2022,.,2,1 卤化物熔点变化规律(P210表6.1),6.1 氧化物和卤化物的性质6.1.1 物理性质,19.12.2022,.,3,注意:1)IA族的LiCl例外; 2)IIA族的熔点:BaCl2SrCl2 CaCl2 MgCl2 BeCl2; 3)熔点: FeCl2 FeCl3 ;SnCl2 SnCl4 原因:用离子极化理论解释。2 离子极化理论,(1)离子极化 (P212) 在外电场的作用下,离子中的原子核和电子会发生相对位移,离子就会变形,产生诱导偶极,这种过程叫做离子极化。,19.12.2022,.,4,_,把组成
2、化合物的原子看作球形的正、负离子,正、负电荷的中心重合于球心。在外电场的作用下,离子中的原子核和电子会发生相对位移,离子就会变形,产生诱导偶极,这种过程叫做离子极化。事实上离子都带电荷,所以离子本身就可以产生电场,使带有异号电荷的相邻离子极化。,19.12.2022,.,5,离子极化的结果,使正、负离子之间发生了额外的吸引力,甚至有可能使两个离子的轨道或电子云产生变形而导致轨道的相互重叠,趋向于生成极性较小的键(如下图),即离子键向共价键转变。因而,极性键可以看成是离子键向共价键过渡的一种形式。,图6.2 离子键向共价键转变的示意图,19.12.2022,.,6,影响离子极化作用的重要因素*,
3、极化力(离子使其他离子极化而发生变形的能力)离子的极化力决定于它的电场强度,主要取决于: 离子的电荷 电荷数越多,极化力越强。,离子的半径 半径越小,极化力越强。如 Mg2+ Ba2+,离子的外层电子构型 8电子构型(稀有气体原子结构)的离子(如Na+、Mg2+)极化力弱,917电子构型的离子(如Cr3、Mn2、Fe2、Fe3+)以及18电子构型的离子(如Ag、Zn2+等)极化力较强。 如 Ag Na+,19.12.2022,.,7,离子变形性(离子可以被极化的程度)离子变形性大小与离子的结构有关,主要取决于:,离子的电荷: 随正电荷的减少或负电荷的增加,变形性增大。 Si4+Al3+Mg2+
4、Na+F-O2-,离子的半径: 随半径的增大,变形性增大。F-Cl-Br-I-; O2-S2-,离子的外层电子构型: 18、917等电子构型的离子变形性较大,具有稀有气体外层电子构型的离子变形性小。K+Ag+ ; Ca2+Hg2+,19.12.2022,.,8,极化对晶体结构和熔点的影响*,以第三周期氯化物为例:由于Na+、Mg2+、Al3+、Si4+的离子电荷依次递增而半径减小,极化力依次增强,引起Cl发生变形的程度也依次增大,致使正负离子轨道的重叠程度增大,键的极性减小,相应的晶体由NaCl的离子晶体转变为MgCl2、AlCl3的层状过渡型晶体,最后转变为SiCl4的共价型分子晶体,其熔点
5、、沸点、导电性也依次递减。,19.12.2022,.,9,3 氧化物熔点变化规律,19.12.2022,.,10,注意:一般情况下,相同价态的某金属的氧化物的熔点都比其氯化物要高。 如 MgOMgCl2 Al2O3 AlCl3 Fe2O3 FeCl3 CaO CaCl2原因:变形性:Cl- O2-,4. 铁的氧化物(P215),19.12.2022,.,11,6.1.2 氧化物和卤化物的化学性质,本节选择科学研究和实际工程中应用较多的高锰酸钾、重铬酸钾、亚硝酸盐、过氧化氢为代表,介绍氧化还原性、介质的影响及产物的一般规律。,无机化合物的化学性质涉及范围很广。现联系周期系和化学热力学,着重讨论氧
6、化还原性和酸碱性。,1 氧化还原性,19.12.2022,.,12,高锰酸钾暗紫色晶体,常用强氧化剂。氧化能力随介质的酸度的减弱而减弱,还原产物也不同。,酸性介质中是很强的氧化剂。还原产物为Mn2+MnO48H+5eMn2+ + 4H2O(MnO4/ Mn2+)1.506V,在中性或弱碱性的溶液中,还原为MnO2(棕褐色沉淀).,在强碱性溶液中,被还原为MnO42-(绿色),19.12.2022,.,13,重铬酸钾橙色晶体,常用氧化剂。,重铬酸钾的氧化性示例:Cr2O72+ 6Fe2+ + 14H+ 2Cr3+6Fe3+ + 7H2O,+6价的铬可以铬酸钾的形式存在,也可以重铬酸钾的形式存在:
7、 2CrO42(aq) + 2H+(aq) = Cr2O72(aq) + H2O (黄色) (橙色),19.12.2022,.,14,亚硝酸钠无色透明晶体,一般用作氧化剂,有弱毒性、致癌。,作为氧化剂:2NO2+ 2I+ 4H+ = 2NO(g) + I2 + 2H2O,作为还原剂Cr2O72 + 3NO2 + 8H+ = 2Cr3+ + 3NO3 + 4H2O,19.12.2022,.,15,过氧化氢,过氧化氢中氧的氧化值为-1,既有氧化性又有还原性。 H2O2 + 2I + 2H+ = I2 + 2H2O2MnO4 + 5H2O2 + 6H+ = 2Mn2+ + 5O2 + 8H2O,过氧
8、化氢的应用漂白剂:漂白象牙、丝、羽毛等;消毒剂:3%的H2O2做外科消毒剂;氧化剂:90%的H2O2做火箭燃料的氧化剂,19.12.2022,.,16,2 酸碱性,氧化物及其水合物的酸碱性强弱的一般规律:,氧化物及其水合物的酸碱性根据氧化物对酸、碱的反应不同可将氧化物分成酸性、碱性、两性和不成盐四类,氧化物的水合物可用一个简化通式R(OH)x来表示。,(1) 周期系各族元素最高价态的氧化物及其水合物从左到右(同周期):酸性增强,碱性减弱自上而下(同族):酸性减弱,碱性增强,19.12.2022,.,17,表6.5 氧化物及水合物的酸碱性 P220,19.12.2022,.,18,图6.11 相
9、同元素不同价态的氧化物及其水合物的酸碱性,(2)同一元素形成不同价态的氧化物及其水合物高价态的酸性比低价的态强;低价态的碱性比高价的态强。,19.12.2022,.,19,氯化物,氯化物与水的作用 活泼金属的氯化物钾、钠、钡的氯化物在水中解离并水合,但不与水发生反应。,非金属氯化物除CCl4外,高价态氯化物与水完全反应。SiCl4(l) + 3H2O = H2SiO3(s)+ 4HCl(aq),不太活泼金属的氯化物镁、锌、铁等的氯化物会不同程度地与水发生反应(水解),尽管反应常常是分级进行和可逆的,却总引起溶液酸性的增强。SnCl2 + H2O Sn(OH)Cl(s) + HClSbCl3 +
10、 H2O SbOCl(s) + HClBiCl3 + H2O BiOCl(s) + HCl,19.12.2022,.,20,硅酸盐,硅酸盐与水的作用,除碱金属外,绝大多数硅酸盐难溶于水也不与水作用。硅酸钠、硅酸钾是常见的可溶性的硅酸盐。将二氧化硅与烧碱或纯碱共熔,可得硅酸钠。SiO2 + 2NaOH = Na2SiO3 + H2O(g)SiO2 + Na2CO3 = Na2SiO3 + CO2(g),Na2SiO3与水反应,强烈水解,呈碱性。 SiO32H2O = H2SiO32OH,19.12.2022,.,21,水玻璃与硅胶*,在一定范围内,水玻璃的模数越大,水玻璃的粘结性越高,硬化速率越
11、快,但粘结后强度较低。因此正确选择模数或加入化学试剂(如NH4Cl或NaOH)来调节模数,是保证粘结质量的一个重要因素。 水玻璃常用做铸型砂的粘结剂:在空气中遇CO2变成粘结力极强的硅凝胶:Na2SiO3 + 2CO2 + 2H2O = H2SiO3(s) + 2NaHCO3,也可以使用氯化铵:Na2SiO3 + 2NH4Cl = H2SiO3(s) + 2NaCl + 2NH3(g),硅酸钠的水溶液称为水玻璃,俗称泡花碱。硅酸钠的计量式可表示为Na2OmSiO2(写成Na2SiO3是简化表示),m称为水玻璃的模数,一般在3 左右。,19.12.2022,.,22,硅酸分子由于其中含有SiO2
12、与H2O的比例不同而形成几种硅酸,通式为mSiO2nH2O,式中m 和n 都是正整数。m1的硅酸称为多硅酸。硅酸凝胶就是多硅酸,受热能完全脱水, 转变成SiO2。若将其中大部分水脱去,可得白色透明固体,称为硅胶。,硅胶的比表面积非常大(800900m2/g),可用作吸附剂、干燥剂和催化剂载体。经CoCl2处理可得变色硅胶,是常用的干燥剂。当蓝色变成粉红色时,就要进行再生处理,方可恢复吸湿能力。,Na2SiO3 + 2HCl = H2SiO3 + 2NaCl,19.12.2022,.,23,6.2 配位化合物,配位化学是无机化学的一个重要研究方向。由于配位化学与生命科学的结合,以及具有特殊功能配
13、合物的良好前景等,使配位化学获得很大的发展。,附图6.4 Cu(DABT)Cl2配合物的分子结构(70K以下呈铁磁性质) , 配体DABT为2,2-二氨基-4,4-联噻唑的简称,配位化学的研究对象是配位化合物,也称为配合物。,19.12.2022,.,24,19.12.2022,.,25,6.2.1 配位化合物的组成和结构,配合物是由中心离子(或中心原子)通过配位键与配位体形成的化合物。根据配位体的不同,配合物分为简单配合物和特殊配合物两类。,简单配合物由单齿配体和中心离子(或中心原子)配位的配合物称为简单配合物。,特殊配合物配位体中至少有一个多齿配体和中心离子(或中心原子)配位形成环状结构的
14、配合物称为螯合物。还有中性金属原子为配合物形成体,CO为配体的羰合物。,19.12.2022,.,26,1. 简单配合物,以Cu(NH3)4 SO4 为例,金属离子 Cu2+为中心离子(又称为配离子的形成体)。在它周围直接配位着四个NH3配位体(能提供配位体的物质称为配位剂)。在配位体中,与中心原子直接相结合的原子叫做配原子(如NH3中N)。与中心离子直接相结合的配位原子的总数是配位数。在Cu(NH3)4 2+中, Cu2+离子的配位数为4。,Cu2+,附图6.5 Cu(NH3)42+离子的结构,19.12.2022,.,27,2. 特殊配合物(螯合物和羰合物),每一个配位体只能提供一 个配位
15、原子的配位体称为单齿配体,而含有两个或两个以上配位原子的配位体称为多齿配体。能提供多齿配体的物质称为螯合剂。由多齿配体形成的环状结构的配合物称为螯合物,如Cu(en)22+。,附图6.6 Cu(en)22+的结构,如果配位化合物的形成体是中性原子,配位体是CO分子,这类配合物称为羰合物。如Ni(CO) 4, Fe(CO) 5 。,19.12.2022,.,28,6.2.2 配位化合物的命名,配离子命名配位体名称列在中心离子(或中心原子)之前,用“合”字将二者联在一起。每种配位体前用二、三、四等数字表示配位体数目。对较复杂的配位体则将配位体均写在括号中,以避免混淆。在中心离子之后用带括号的罗马字
16、表示其氧化值。例如:Ag(NH3)2+命名为二氨合银(I)配离子。,若配体不止一种,不同配体名称之间以中圆点“”分开。配体列出的顺序按如下规定:,无机配体先于有机配体,无机配体中,先负离子后中性分子,同类配体的名称,按配原子元素符号的英文字母顺序排列,19.12.2022,.,29,配合物命名服从一般化合物的命名原则。若与配位阳离子结合的负离子是简单酸根,则该配合物叫做“某化某”;若与配合物阳离子结合的负离子是复杂酸根如SO42-、Ac-等叫做“某酸某”。若配合物含有配阴离子(即配离子是负离子),则配阴离子后加“酸”字,也叫做“某酸某”,19.12.2022,.,30,配合物命名示例,Ag(N
17、H3)2Cl氯化二氨合银(I)Cu(en)2SO4硫酸二(乙二胺)合铜(II)HAuCl4四氯合金(III)酸K3Fe(CN)6六氰合铁(III)酸钾KPtCl3(C2H4)三氯乙烯合铂(II)酸钾CoCl(NH3)3(H2O)2Cl2二氯化一氯三氨二水合钴(III)Co2(CO)8八羰合二钴,NaAl(OH)4 四羟基合铝(III)酸钠,Co(NH3)6Cl2 二氯化六氨合钴(II),19.12.2022,.,31,6.2.3 配合物的结构,1 配合物的空间构型,配合物的空间构型是指配体围绕着中心离子或原子排布的几何构型。 测定配合物空间构型的方法很多,常用的是单晶X-射线衍射法,这种方法能
18、够比较精确地确定配合物中各个原子的位置、键长、键角、扭转角等,从而得出配合物分子或离子的空间构型。 空间构型与配位数的多少存在密切的关系。,19.12.2022,.,32,19.12.2022,.,33,19.12.2022,.,34,从表中可以看出,在各种不同的配位数的配合物中,围绕形成体(中心离子或原子)排布的配体,趋向于处在彼此排斥作用最小的位置上。这样的排布有利于使体系的能量最低。这与价层电子对互斥理论对一般分子的空间构型的推断是一致的。从表中还可以看出配合物空间构型不仅仅取决于配位数,当配位数相同时,还常与中心离子和配体的种类有关,如Ni(CN)42-是平面正方形,而NiCl42-的
19、构型为四面体构型。,19.12.2022,.,35,分子式相同,但结构和性质不同的配合物称为配合物的同分异构体,这种现象称为同分异构现象。配合物的同分异构现象是一种非常普遍的现象,通常可分为几何异构、旋光异构、键合异构、电离异构、溶剂合异构、配位异构等。,2 配合物的同分异构现象(略),19.12.2022,.,36,1. 几何异构现象 配体相同但空间排布方式不同的现象称几何异构。其实质为空间异构 四面体配合物不存在几何异构现象,但MA2B2型平面正方形配合物存在顺式(cis-)和反式(trans-)异构现象。如Pt(NH3)2Cl2有两种几何异构体(图12-5)。,19.12.2022,.,
20、37,这两种几何异构体的性质不同:cis-Pt(NH3)2Cl2呈棕黄色,为极性分子,在水中的溶解度为0.258 g/100 gH2O,而且具有抗癌活性。,19.12.2022,.,38,邻位的Cl可被OH,然后被草酸根取代,形成Pt(NH3)2(C2O4):而trans-Pt(NH3)2Cl2呈淡黄色,为非极性分子,在水中的溶解度仅为0.037 g/100 g H2O,难溶于水,也不具有抗癌活性,而且也不能转化为草酸配合物。,19.12.2022,.,39,一般来说,中性顺反异构体可以通过测量偶极矩来区分。因为顺式异构体的偶极矩不为零,是极性分子,而反式偶极矩为零,是非极性分子。配合物的几何
21、异构体现象,可以通过IR和Raman光谱进行研究。,19.12.2022,.,40,2. 旋光异构现象旋光异构体又称光学异构体或光学活性异构体,是指两种异构体的对称关系类似于一个人的左手和右手,互成镜像关系(图12-8)。,19.12.2022,.,41,光学活性是一种普遍现象,许多分子具有这样的特性,这类分子叫做手性分子。例如,Cis-Cr(SCN)2(en)2+与它的镜像是不能重叠的,但异构体II与异构体I的镜像相同,故Cis- Cr(SCN)2(en)2+属于手性离子,具有旋光异构体(异构体I, II); 而Trans-Cr(SCN)2(en)2+与它的镜像相同(图12-9),不是手性离
22、子,没有旋光异构体。,19.12.2022,.,42,具有旋光异构体的配合物可使平面偏振光发生方向相反的偏转,其中使偏振光向右(顺时针)偏转的为右旋旋光异构体(符号D表示),使偏振光向左(逆时针)偏转的为左旋旋光异构体(符号L表示)。,19.12.2022,.,43,具有相同的物理性质(如熔点,沸点,溶解度,折射率,酸性,密度等),热力学性质(如自由能,焓、熵等)和化学性质的异构体称为对映异构体,简称对映体,对映体的熔点、沸点、在非手性溶剂中的溶解度及与非手性试剂反应的速度都相同,而旋光性、与手性试剂反应或在手性催化剂或手性溶剂中的反应速度则不同。这类配合物异构体在生物体内的生理功能有极大地差
23、异,生物体内含有许多具有旋光活性的有机物。,19.12.2022,.,44,3. 键合异构现象 能以不同的配位原子参与配位的离子称为两可离子,如亚硝酸根、硫氰酸根、氰根等配体能以不同的配位原子与中心离子键合,形成键合异构体(linkage isomer)。如Co(NH3)5(NO2)Cl2和Co(NH3)5(ONO)Cl2; Co(en)2(NCS)(NO2)Cl和Co(en)2(NCS)(O-NO)Cl; Co(en)2(NO2)2X和Co(en)2(ON-O)2X (X= F, Cl, Br, I); Co(NH3)2(Py)2(N-O2)2Cl2和Co(NH3)2(Py)2(ONO)2C
24、l2等都是键合异构体。,19.12.2022,.,45,为区分M-NO2和M-ONO两种键合异构体中的配体,我们将前者称为硝基,后者称为亚硝酸根(nitrito)。如Co(en)2(NO2)2Cl命名为氯化二硝基二乙二胺合钴(III), 而Co(en)2(ONO)2Cl命名为氯化二亚硝酸根二乙二胺合钴(III)。,19.12.2022,.,46,6.2.4 配合物的价键理论,基本要点,在形成配位化合物时,中心离子所提供的空轨道进行杂化,形成多种具有一定方向的杂化轨道,从而使配合物具有一定空间构型。,中心离子中心离子(或原子)有空的价电子轨道可接受由配位体的配原子提供的孤对电子而形成配位键。,配
25、位体配位体的配位原子必须有孤对电子可提供,常见的配位原子有C、N、S、O、F、Cl、Br、I等。,19.12.2022,.,47,前面章节我们曾讨论了主族元素的杂化轨道,如sp3, sp2, sp杂化轨道。对大多数d区元素的原子来说,d轨道也能参与杂化,形成含有s, p, d成分的杂化轨道,如sp3d2, dsp3等杂化轨道,现将常见的杂化轨道、空间构型和一些实例列于表12-5。,19.12.2022,.,48,19.12.2022,.,49,1. 配位数为2的配合物一般来说,d10金属离子易形成配位数为2的配合物,如Cu+的配合物Cu(NH3)2+, Ag+的配合物Ag(NH3)2+, Ag
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 普通化学 第6章 无机化合物课件 普通 化学 无机化合物 课件

链接地址:https://www.31ppt.com/p-1799692.html