自动控制原理第8章资料课件.ppt
《自动控制原理第8章资料课件.ppt》由会员分享,可在线阅读,更多相关《自动控制原理第8章资料课件.ppt(75页珍藏版)》请在三一办公上搜索。
1、第八章 非线性系统分析,8-1 非线性控制系统概述,8-2 常见非线性及其对系统性能影响,8-3 相平面法,8-4 描述函数法,一、研究非线性控制理论的意义在前面各章中,我们讨论了线性系统的分析与设计问题。但是,理想的线性系统是不存在的。实际的物理系统,由于其组成元件在不同程度上具有非线性特性,严格地讲,都是非线性系统。当系统的非线性程度不严重时,采用线性方法进行研究是有实际意义的。但是,如果系统的非线性程度比较严重,采用线性方法往往会导致错误的结论。因此,必须对非线性系统进行专门的探讨。,8-1 非线性控制系统概述,二、非线性系统的特点 1、稳定性分析复杂 线性系统只有一个平衡状态,其稳定性
2、只决定于系统本身的结构和参数,而和系统的初始条件无关。然而非线性系统可能存在多个平衡状态,其稳定性不仅与系统本身的结构和参数,而且与系统的初始条件有关。,如非线性方程上述系统方程中x项的系数是(1x),它与变量x有关。若设t0时,系统的初始状态为xx0,由上式得两边积分得,令可解得该系统有两个平衡状态x0和x1。,具体分析:(1)对于平衡状态x=0,只要x01,系统有能力恢复到平衡状态x=0,平衡状态x=0是小范围稳定。(2)对于平衡状态x=1,若x01,t时,x(t) ,平衡状态x=1不稳定。,2、可能存在自激振荡 对于线性系统而言,只有当系统处于稳定的临界状态时,才会出现等幅振荡,但这一运
3、动形式是不能持久的。系统参数稍有细微的变化,这一临界状态就不能继续,而会转化为发散或收敛,然而在非线性系统,即使无外界作用,往往也会产生具有固定振幅和频率的振荡,称为自激振荡。自激振荡是非线性系统特有的现象。,2、可能存在自激振荡 在多数情况下,正常工作时不希望有振荡存在,必须设法消除它;但在有些情况下,特意引入自激振荡,使系统具有良好的静态、动态特性。,3、频率特性发生畸变 在线性系统中,当输入信号为正弦函数时,稳态输出信号也是相同频率的正弦函数,两者仅在幅值和相位上不同,因此可以用频率特性来分析线性系统。但是在非线性系统中,当输入信号为正弦函数时,稳态输出信号通常是包含高次谐波的非正弦周期
4、函数,使输出波形发生非线性畸变。,四、分析与设计方法而非线性系统要用非线性微分方程来描述,不能应用叠加原理,因此没有一种通用的方法来处理各种非线性问题。1、相平面法(一、二阶系统)2、描述函数法(高阶系统),8-2 常见非线性及其对系统运动的影响,一、死区特性 特点:当输入信号在零位附近变化时,系统没有输出。当输入信号大于某一数值时才有输出,且与输入呈线性关系。 影响:控制系统中死区特性的存在,将导致系统产生稳态误差,而测量元件死区的影响尤为显著。但有时人为地引入死区,可消除高频的小幅度振荡,从而减少系统中器件的磨损。,实际工程中很多测量机构和元件都存在死区,即该元件的输入信号未超过某一特征数
5、值时,无相应的输出;只有当输入信号的幅值超过这一特征值时,才有相应的输出。例如,作为执行元件的电动机,由于轴上存在静摩擦,电枢电压必须超过某一数值电机才可能转动;测量放大元件,输入信号在零值附近的某一小范围内时,其输出等于零,只有当输入信号大于此信号范围时才有输出。此外,电气触点的预压力,弹簧的预张力,各种电路的阈值等都构成了死区。,二、饱和特性特点:当输入信号超出其线性范围后,输出信号不再随输入信号变化而保持恒定。影响:饱和特性将使系统在大信号作用下之等效放大系数减小,因而降低稳态精度。在有些系统中利用饱和特性做信号限幅。,三、间隙特性特点:当输入x在不断增大时,输出y与输入x的关系由图7中
6、箭头向右的线段确定,当输入x在不断减小时,输出y与输入x的关系由箭头向左的线段确定。影响:一般说来,间隙特性会使系统稳态误差增大,相角滞后增大,从而使动态性能变坏,所以应尽量避免或减小。,齿轮传动中的齿隙液压传动中的油隙,齿轮传动中的间隙,四、继电器特性 继电器是继电特性的典型元件。 继电特性常常使系统产生振荡现象,但在控制系统中,有时利用继电器的切换特性来改善系统的性能,也可以构成正弦信号发生器。,8-3 相平面法,相平面法是一种图解法,适用于非线性和一阶或二阶线性环节组成的非线性系统。,一、相平面法基本概念,2、相轨迹相变量随t变化而形成的曲线称为相轨迹,曲线上箭头方向为t增加方向。,0,
7、2,4,6,8,二、相轨迹的绘制(1)解析法对于可以对微分方程实行分段积分的非线性系统,可以采用解析法,即用求解微分方程的办法找出x和 的关系,从而可在相平面上绘制相轨迹。,解 描述系统的微分方程式为,例题 某弹簧质量运动系统如图所示,图中m为物体的质量,k为弹簧的弹性系数。若初始条件为x(0)x0,试确定系统自由运动的相轨迹。,该系统自由运动的相轨迹为以原点为圆心、为半径的圆,,二、相轨迹的绘制,(2)等倾线法对于可以对微分方程实行分段积分的非线性系统,应用解析法是方便的,但这究竟是属于少数的情况。就一的般非线性系统而言,常需要用图解法来绘制相轨迹。图解法常用的方法有两种:即等倾线法和法。我
8、们只介绍等倾线法。等倾线法的基本思路是先确定相轨迹的等倾线,进而绘制出相轨迹的切线方向场,然后从初始条件出发,沿方向场逐步绘制相轨迹。,其中,是相轨迹的斜率,令为一常数,则有,根据等倾线方程可在相平面上作一曲线,称为等倾线。当相轨迹经过该等倾线上任一点时,其切线的斜率都相等,均为。取为若干不同的常数,即可在相平面上绘制出若干条等倾线,由此即可构成相轨迹的切线方向场。所以,根据给定的初始条件,从初始点出发,便可沿各条等倾线所决定的相轨迹的切线方向依次画出系统的相轨迹。,是相轨迹斜率,是等倾线斜率,例题:,注意事项(P395),三、线性系统的相轨迹,线性系统是非线性系统的特例,对于许多非线性一阶和
9、二阶系统(系统所含非线性环节可用分段折线表示),常可以分成多个区间进行研究。而在每个区间内,非线性系统的运动特性可用线性微分方程描述。因此,研究线性一阶、二阶系统的相轨迹及其特点是十分必要的。,1、一阶系统的相轨迹,T0,相轨迹沿直线发散至无穷,x,T0,相轨迹沿直线收敛于原点,2、二阶系统的相轨迹,描述线性二阶系统自由运动的微分方程为,由第3章的分析可知,线性二阶系统运动的性质取决于特征根的分布,主要有以下几种情况。,1)无阻尼运动(0)此时特征方程的根为一对共轭虚根,方程变为,2)欠阻尼运动(01)此时特征方程的根为一对具有负实部的共轭复根,其相轨迹在前面已经用等倾线绘制 =0.5,由图可
10、以看出,无论初始条件如何,经过衰减振荡,系统最终趋于平衡点即坐标原点。,3)过阻尼运动(1)此时特征方程的根为两个负实数根,过阻尼系统在各种初始条件下的响应均单调地衰减到零,其对应的相轨迹单调地趋于平衡点原点。可以证明,此种情况下的相轨迹是一簇通过原点的抛物线,系统的暂态分量为非振荡衰减形式,存在两条特殊的等倾线,其斜率分别为,4)负阻尼运动此种情况下系统处于不稳定状态,按照特征根的不同分布,可分为两种情况予以讨论。(1)10时,系统的特征根为一对具有正实部的共轭复数根,系统的自由运动为发散振荡形式,此时的相轨迹是一簇从原点向外卷的离心螺旋线,如图所示。,(2)1时,系统的特征根为两个正实数根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 原理 资料 课件

链接地址:https://www.31ppt.com/p-1798738.html