数学的发展历史.docx
《数学的发展历史.docx》由会员分享,可在线阅读,更多相关《数学的发展历史.docx(18页珍藏版)》请在三一办公上搜索。
1、七年级九班李蕙茹一、 探究背景: 研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同,所以,我们既可以在数学中学到历史,又可以在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,并不是空中楼阁,而是人类智慧的结晶。二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常
2、识等资料,对数学的功用问题有一个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的九章算术到现代的微积分,上上下下经历了几千年的时间,与现代数学联系起来,对数学历史的考证有巨大的作用。 2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用的资料,进行整理,这是一种比较常见的方法。四、探究结果:(一)数学的起源与早期发展据易?系辞记载:上古结绳而治,后世圣人易之以书契。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立
3、符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间法则是:一纵十横,百立千僵,千、十相望,万、百相当,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面史记?夏本记中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现勾三股四弦五这个勾股定理西
4、方称勾股定理的特例。战国时期,齐国人着的考工记汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有墨经中关于某些几何名词的定义和命题,例如:圆,一中同长也、平,同高也等等。墨家还给出有穷和无穷的定义。庄子记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如至大无外谓之大一,至小无内谓之小一、一尺之棰,日取其半,万世不竭等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继
5、承和发展。此外,讲述阴阳八卦,预言吉凶的易经已有了组合数学的萌芽,并反映出二进制的思想。 (二)中国数学的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简算数书,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。西汉末年公元前一世纪编纂的周髀算经,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提
6、出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。九章算术是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年公元前一世纪。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。在代数方面,方程章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学
7、理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对周髀算经做了详尽的注释,在勾股圆方图注中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释九章算术,在九章算术注中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1方田中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416)。(三)
8、中国数学教育制度的建立隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释算经十书包括周髀算经、九章算术、海岛算经、孙子算经、张丘建算经、夏侯阳算经、缉古算经五曹算经、五经算术和缀术,作为算学馆学生用 的课本。对保存古代数学经典起了重要的作用。由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订皇极历时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其大衍历中将其发展为不等间
9、距二次内插公式。唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。(四)中国数学的发展高峰公元1050年左右,北宋贾宪(生卒年代不详)在黄帝九章算法细草中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(黄帝九章算法细草已佚)公元10881095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 发展 历史

链接地址:https://www.31ppt.com/p-1794491.html