在科学技术发展到跨进21世纪的今天.docx
《在科学技术发展到跨进21世纪的今天.docx》由会员分享,可在线阅读,更多相关《在科学技术发展到跨进21世纪的今天.docx(14页珍藏版)》请在三一办公上搜索。
1、前言 在科学技术发展到跨进21世纪的今天,应该交给大学生什么样的数学,数学科学的哲学和方法论、数学应用的思维方式如何,以及把数学作为技术开发的工具是怎么样的等等,这一系列问题已经尖锐地摆在工科数学教育工作者面前。目前,大家已经形成的共识是,讲授数学知识不能仅仅局限于伴随牛顿力学产生和发展起来并于一百来年已经形成的经典理论,而是不仅教给学生数学基础理论,还要教给学生应用数学的技能,特别是数学建模和计算机模拟的本领;数学应用的思维方式在提倡抽象思维的同时更强调形象思维或直感思维,使用几何方法,形象化的描述及计算机图示,因为图形对想象力和创造力是强有力的刺激因素;数学应用要把计算机及其技术作为不可缺
2、少的工具和手段,使大学生学习计算机同数学科学的学习与研究紧密结合,不但会用计算机,而且能理解计算机给出的答案。这些共识就是数学教育改革所追求的方向和目标。绪论:如何认识数学数学是人类最古老同时又是最富生命力的知识领域之一。在近几百年,几乎每个世纪,数学都出人意料地获得惊人的发展而创造出新的黄金时代。然而,时至今日仍有不少人对学习、研究数学的目的和意义产生种种疑惑,特别是刚进入高等学校的接受工程技术教育的学生们总是对学习数学产生一系列的疑问,问的最多的是“学习数学对以后所从事的技术工作有什么用?”。甚至有人认为随着计算机技术的发展,大量的计算问题可以由计算机软件处理,学习数学知识已不那么重要了。
3、应该说这是我们数学教育现在必须回答的一个带有根本性的问题。当然,大多数人学习数学既不想当数学家,也不想从事数学教育工作,只是为了进一步学习专业知识和技术而学习数学,而我们面向工程技术教育的学生讲授数学的方式以及学生的学习方法确实有很多地方值得认真反思。一方面,过分的注重“纯数学”的严密体系、严格的证明和复杂计算,而不注重它的应用性和工具性(科学语言);另一方面,只满足于会作题、应付考试的“应试学习”方式,致使学生们无法对数学知识、思想、方法及其应用价值有明晰的认识。为此,我们提出新的尝试,既传授基本的数学知识,又训练应用技能。本章的目的是想让学生对数学有一个基本的概括性认识。一、 数学无处不在
4、数学是研究数和形及其关系的一门科学。它以研究现时世界中的数量关系和空间形式为主要任务。通俗地讲,数学是以数字、符号、形状和模式来代替文字的一套特殊语言系统。或者说,数学是一种能够描述各种客观规律的语言,是任何学科都要用到的、无比有用、无所不能、神通广大、全球共通的一种特殊语言。正像已故的著名数学家华罗庚教授所说,宇宙之大,粒子之微,火箭之速,华工之巧,地球之变,生物之谜,日用之繁,数学无处不在,凡是有“量”和“形”的地方就少不了用数学,研究量(或形)的关系、量(或形)的变化、量(或形)的变化关系、量(或形)的关系的变化等问题都离不开数学作为语言工具。我们现在无法真正理解为什么毫无智能的动物、植
5、物,甚至低等生物,都会进行奇特的数学创造。如某些细菌的繁殖会满足一些奇妙的数学规律,植物的花瓣形成精美的几何图形,某些贝壳和松果具有螺旋形生长模式等等。自然界充满着数学概念的实例。这就是数学之所以成为描述、解释自然现象的语言的原因。例如,圆形蜘蛛网是一个简单漂亮的数学创造,要分析这个美丽结构用数学方法进行分析时,出现在蜘蛛网中的数学概念是惊人的:半径、弦、平行线段、三角形、全等对应角、对数螺线、悬链线和无理数e 。我们知道蜜蜂营造的蜂房也是奇妙的数学图形。十八世纪初,法国学者马拉尔奇测量了蜂房,发现正面看去它是镶嵌得如此天衣无缝的正六角形,蜂王的底都是由三个全等的菱形组成的,菱形的钝角都是10
6、9,锐角都是等于70(图0-1),这不仅是蜂房 图0-1的空间结构呈如此精美的几何形状,而且据巴黎科学院院士、瑞士数学家克尼格与苏格兰数学家马克劳林的理论计算,这种结构消耗最少的材料和最少的“工时”,这里竟然符合最优化的数学原理,真是不可思议!蜜蜂没有学过镶嵌理论、求解最大值和最小值方法、解线性代数问题和求含约束条件的最优解的艺术,而它却实实在在进行了奇妙的符合数学原理的工程技术创造,这不正是把自然界与数学联系起来的例证吗?在矿物结构中,同样可以找到许多更为奇妙的空间图形,如食盐矿的晶体呈正方体形状,明矾的晶体呈正八面体形状,而矿物质中其它更多的晶体呈更为复杂的几何形状,如十字架石晶体呈正交或
7、斜交十字架双晶形;电气石晶体色泽美丽可作为宝石,呈拄状晶形,拄面有明显的纵条纹,横断面呈弧线三角形;如石榴石的晶体结构呈菱形十二面体或四角三八面体的复杂美妙的几何形状,透明色泽的也可作为宝石等(图0-2)。 图0-2再从宏观来看,我们所生活的地球与它的卫星月亮之间有着紧密的联系,月亮是沿着椭圆形轨道绕地球旋转的。轨道的远日点距离为406700公里(最大),近日点距离为356400公里(最小),亿万年来,都是如此周而复始地按此规律运行。我们所处的宇宙里,天体之间运行规律无一不是精确的数学关系式。伟大的天文学家开普勒在谐和宇宙一书中进一步研究行星运动规律,发现了著名的开普勒行星运动运动三大定律:
8、(1)行星绕太阳运行的轨道是椭圆形的,而太阳在椭圆的一个焦点上。这个定律说明了行星运动轨道的数学形式为: 运动方程为: , . 离心率为:(2)行星的向径(行星与太阳的连线)在相等的时间内扫过相等的面积。这个定律说明了行星的运动速度的数学形式为:.(如图0-3所示)(3)行星绕太阳公转周期的平方与它们到太阳的平均距离的立方成正比例。这个定律说明行 图0-3星行星运动的周期性。事实上,说明(其中a表示行星到太阳的平均距离,T表示公转周期,G为万有引力常数,M为太阳质量)。三定律的发现,不仅使人们准确地预先计算出行星的未来的位置,编制成行星的星历表供航海与大地测量使用,更重要的是人们可以利用数学的
9、帮助去发现新的行星。果然,在开普勒以后的一百年后,德国天文学家提出在行星的轨道间缺一颗行星,1781年,德国天文学家威廉赫歇发现了这颗新星,这就是著名的天王星。19世纪中叶,法国天文学家勒维耶(1811-1877)和英国天文学家亚当斯(1819-1892),分别独立计算出一颗新行星,命名为海王星。这些行星运动的规律、以及新行星的发现,都是数学方法的光辉应用的结果。目前已发现了距太阳约60亿公里的最遥远的一颗大行星冥王星,因此,人们已经知道了太阳系有九大行星。而且在火星与木星之间发现两千多颗小行星。太阳系所在的星系,成为银河星系。银河星系的面目已研究的比较清楚了。它的形状像个铁饼,直径10万光年
10、,中央厚度约1万光年。银河系中的物质分布成旋涡状,状似螺线,太阳系在银河系的边沿。90年4月美国发射太空的哈伯望远镜,观察到遥远星系的状况,并发现这些星系的运行规律与人们利用数学计算推测的结果几乎是一致的。如今,人们利用数学不仅能计算出星系的运行规律,而且还能计算出恒星的寿命,以及太阳系、地球、宇宙的年龄等等,这些研究成果越来越使人类更清晰地了解我们的宇宙过去、现在和未来。至于人类自身的发明创造,更与数学有密切的联系。高耸入云的摩天大楼、大跨度的大桥、高性能的电子仪器设备、人造卫星、航天飞机、计算机网络与信息通讯设施等等,这些全是人类数学智慧的结晶。二、数学伴随人的一生从婴儿出生的第一刻起,父
11、母要记他的出生时间、医生要为他量体重和身长,还要检查各项健康指标,定时、定量哺乳、进食,这些都于数学有关,婴儿一出生就遇到了数学,并在以后的时光里,数学将帮助婴儿健康成长。随着幼儿的成长,越来越离不开数学。一旦人开口学说话,大人开始教数“1,2,3,”,“识数”是人生的第一课。后来逐渐能直观地识别物体大小、东西的多少,这就有了初步的数量概念,漫漫地大人教他学习画三角形、正方形和圆等等。当你会到商店买东西,就学会了简单计算;正是有了这些初步的数量概念,才会有时间概念,知道什么时候看电视、什么时间睡觉,也会记住一些重要的节日和自己的生日等;也正是有了这些初步的几何图形概念和简单计算能力,才使幼儿逐
12、渐具有了数量、运算、空间、形状等初始的数学思想意识。不难想象,如果我们人类没有这些数、量、空间、形状与关系的思想意识,人类将和其它动物一样,陷入何等浑噩无知与黑暗之中,那将是非常可怕的混沌的时代。事实上,人类的祖先开启智能的标志之一,就是有了数量和几何形状的观念和意识。当我们进入小学、中学学校学习,开始正式学习数学这门学科,懂得了更为深奥的数学语言和图形语言。知道了整数、小数、分数、正数、负数、有理数、无理数、实数和复数,明白了相等与不等、方程与函数、有限与无限、数列与极限;懂得了图形的全等与相似、直线、圆、轴对称和中心对称、平移、旋转、标量、矢量、坐标、正弦曲线、余弦曲线、抛物线、椭圆、双曲
13、线,多面体、旋转体,空间曲线和曲面等等。我们也学会了加、减、乘、除、乘方、开方,整式、分式、幂式、根式、方程式、函数式,等式、不等式,排列、组合、二项式展开的运算,学会了几何作图、等分、等积变形、分割、展开、放大、缩小、平移、旋转、反射以及无限细分与无限积累等数学方法。这样以来我们的大脑里已经装进了人类数千年长期总结积累的初等数学知识的精粹与思维的模式,使我们的思维方式更科学化了,也就是说,数学训化了我们的大脑,使我们更聪明睿智了。进入高等教育阶段,我们要成为某个学科或技术领域的专门人才,要学习系统的专业知识和技术,就需要更多、更深入的数学知识。我们要弄懂函数与极限、函数与连续,函数的导数、微
14、分、不定积分、定积分、曲线积分、曲面积分,拉氏变换和逆变换,级数、傅立叶级数与函数的泰勒展式,微分方程,行列式、矩阵、线性方程组和n维向量,概率统计,图论,线性规划与动态规划等一系列数学概念和知识,同时我们还要学会利用这些概念和知识,会计算变化率、改变量,会分析函数的性质和函数图形的特征,会求函数的极值,会进行近似计算与误差分析,会求函数曲线所围成的图形的面积、曲线长度和曲面体积,会求解一阶线性微分方程和二阶常系数微分方程,会求一些函数的拉氏变换和逆变换,会把一个函数展成幂级数、把周期函数展成傅立叶级数,会求行列式的值、会进行矩阵变换和解线性方程组,会求矩阵的特征值和特征向量,会求概率和进行简
15、单的统计分析,会利用图论方法、线性规划和动态规划解决一些优化问题,会利用已有的数学知识和方法建立数学模型等等。十余年的数学学习,不仅增长了知识,还学会了逻辑思维,就这一点对人的帮助最大。当你会归纳、类比、联想,会灵活处理问题,增强了直觉能力,有了数感,有了形感时,那你会变得更聪明、智慧。当你走向技术或管理岗位,经常要借助计算机进行工程计算或经济核算,经常要进行分析、判断和决策。这使你感到通过数学培养出的能力有了用武之地。目前出现的一些优秀数学软件功能非常强大,不仅能进行数值计算,而且还能进行符号运算,这不仅使繁琐的计算、推导变得轻松自如,而且也能协助我们进行逻辑思维,作出正确判断。因此学会利用
16、流行的数学软件已是工程师、经济师们必不可缺学习任务。我们要相信,这一系列数学知识的掌握和数学能力的培养,是你成为一名高级技术或管理人才的基础。我们不难发现,如今的社会生活信息化程度越来越高,终身学习已经成为人的一种特别需要,“会学习”已成为当今社会对人的一种基本要求。然而,“会学习”的前提是必须具备通过数学培养出的足够的 “阅读”能力和逻辑思维能力。事实证明,没有经过数学逻辑思维训练的人,一般不会有健全的学习能力。当然,不一定是终身要学数学,但一定是终身要用数学。毫无疑问,数学将伴随人的一生。三、 数学的基本特征数学是人类智力的产物,许多人认为它具有三个最基本的特征:一是高度抽象性,二是高度精
17、确性,三是广泛应用性。1 数学的高度抽象性 数,就是离开具体事物的实际背景,仅仅从它的数量侧面上反映出来的一种抽象。在人类有文字记载的初期,人们就知道把具体的一些物体的数量用符号记录下来,这时人们已经开始有了把“数”从具体事物抽象出来的意识。例如3(古代有各种表示方法,现在我们采用的是阿拉伯人的记法)这个数既可表示3个苹果,也可表示3个人或3本书等等,而3本身已经摈弃了苹果、人或书等的具体含义,仅仅抓住数量这一特征的一种抽象。形,也是如此,直线这一概念是从拉紧的纱线,透过小孔的光线,笔直的路线等等现实事物中抽象出来的。几何学中的直线舍弃了所有纱线、光线、路线等等事物的性质,只留下在一定方向上无
18、限伸长这一抽象形式。几何图形的概念,都是舍弃了现实对象的所有性质,只留下空间形式和大小、位置这些抽象结果。全部数学都具有这种抽象的特征。其实,抽象的方法其他学科应用也很广泛,几乎任何学科都有一些的抽象性的概念手段,如现代物理学中的各种“场”、“熵”、“势”等等也都是比较抽象的概念;又例如力学中的刚体运动,常把一个物体视为一个质点,把运动轨迹看成一条曲线或直线,这就是典型的抽象手法。特别是天体运动研究中,把星球的运行轨迹认为是椭圆,这时就把巨大的星球看成是几何点(无体积的点,或把体积“抽象”掉了)。但这些抽象的概念并没有完全摆脱实际背景,人们还很容易想到它的真实情况,而现代纯粹数学的抽象程度越来
19、越高,有些已经难于找到它的现实背景。尤其是在过去的一个世纪里,数学从内容、意义到方法都经历了前所未有的深刻变革。回顾这种深刻变革,我们会发现:数学的无限生命力,恰恰是源于其发展过程中的三个貌似相互矛盾、实则相互统一的特点,即:数学的抽象性、精确性和数学的广泛应用性。在20世纪,数学的这两个特点更是共轭地发展着,使数学比以往任何时代都更加成为整个科学技术赖依生存的基础和人类文明、进步的标志。脱离具体的实际背景对事物进行“量”与“形”的抽象是数学固有的特性,可以说没有这种抽象就没有数学。20世纪数学更高的抽象化趋势,最初主要是受了两大因素的推动,即集合论观点与公理化方法,二者相互结合孕育了抽象代数
20、、拓扑学、泛函分析等新的抽象分支,同时又引发了一些传统数学分支(特别如概率论)的革新。数学的核心领域不断拓展,研究对象不断扩张。例如,过去作为分析学主角的函数概念被扩张为泛函、算子和一般的映射;代数学研究的中心从普通的数转化为群、环、域等一般的代数结构;几何学则主要探讨各种各样的抽象空间(包括无穷维空间、分数维空间、弯曲的非欧空间、可变形的拓扑空间等)。可以说,现代数学不仅研究现实世界的空间形式与数量关系,而且研究一切可能的空间形式与数量关系。在更广泛的意义上,数学已经被看作是关于“模型”(pattern)的学科,包括数的模型,形的模型,运动与变化的模型,推理的模型,行为的模型这些模型既可以是
21、现实的,也可以是想像的;既可以是定量的,也可以是定性的,等等。 纯粹数学在20世纪经历了一系列激动人心的发展,过去若干世纪以来积累的一些重大问题,有许多已获解决或是取得了重要进展。历300余年悬而未决的费马大定理的获证(1994),可以说是20世纪纯粹数学美妙的终曲。对于X的n次方X的n次方Z的n次方这一看似简单的方程式,费马在300多年前提出,当n大于或等于3时无整数解。此后,300多年无人能证明这一定理。除了费马大定理,像事关数学大厦基础的哥德尔不完全性定理的提出(1931)、具有异乎寻常的微分结构的“米尔诺怪球”的发现(1956)、揭示数学内在统一性的“阿蒂亚辛格指标定理”的证明(196
22、3)、四色定理的攻克(1976)、有限单群分类的完成(1980)、等等,这些辉煌的智力成果,不断使科学界震惊,而它们的获得,都依赖于极度抽象的概念与方法。以费马大定理的证明为例,由于它综合运用了包括数论、代数几何、李群和分析等众多数学分支的思想与方法而被喻为“后现代艺术”。这条表述极其初等的定理,要看懂英国数学家维尔斯对它的证明,即使对训练有素的职业数学家来说也并非易事,这多少说明了现代数学抽象的程度。哥德尔不完全性定理的提出,可涉及的领域甚至包括哲学。其抽象化也是达到了相当高深的程度。 现代数学抽象化趋势的增长,有时不免引起人们对数学的误解,认为数学是只有少数思维怪杰才能问津的、远离现实的象
23、牙塔。然而数学的抽象决不是无源之水、无本之木。相反,数学与现实世界的联系源远流长。由于数与形是事物所共有的本质属性的抽象,数学在其发展的早期就表现出解决因人类实际需要而提出的各种问题的功效。随着数学抽象程度的提高,数学与现实世界的联系有时呈现出曲折性,数学理论往往会领先发展,但这常常只是重大应用的前奏。数学的发展史表明,数学的抽象越是完善,其渗透能力就越强,应用范围就越广。20世纪是一个纯粹数学与应用数学相互影响,共同繁荣的时代,应用数学的蓬勃发展,已蔚成当代数学的强大潮流,并表现出与以往时代不同的鲜明特征。在目前的基础教育和高等教育教学中,尤其是在高等工程技术教育中,重视数学知识的实际背景,
24、加强应用数学意识与能力的培养,是十分必要和迫切的任务。但我们必须清楚,数学的巨大应用威力,正是源于它在宇宙世界和人类社会的探索中对最大限度的一般性即抽象性的追求。数学抽象作为一种科学思维的范式,是现代化人才不论其从事何种职业所必须具备的基本素质,虽然对不同的人要求可有所不同。值得指出的是,数学抽象思维包括了演绎证明、归纳推理、算法构思等不同的方面,应该是一个整体的、全面的概念。我们在工程类或管理类专业教育中,特别强调数学回归自然,回归工程实际,回归技术应用,但我们不可能摆脱数学的抽象性特点。在这里把数学教育的目的定位于应用能力培养,是非常正确的,且最重要的目的是抽象思维能力培养,因为会用抽象的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 科学技术 发展到 跨进 21 世纪 今天
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-1791564.html