大数据在化工厂的应用解决方案(化工大数据)课件.ppt
《大数据在化工厂的应用解决方案(化工大数据)课件.ppt》由会员分享,可在线阅读,更多相关《大数据在化工厂的应用解决方案(化工大数据)课件.ppt(49页珍藏版)》请在三一办公上搜索。
1、大数据在化工厂的应用解决方案,(,化工大数据,),大数据在化工厂的应用解决方案 (化工大数据),大数据在化工厂的应用解决方案(化工大数据)课件,企业关注点,?,现状:炼化企业在现有良好精细化管理水平,上,为深度解决经济效益和生产安全,决策层,需要,以最接近真实的数据预测未来以做出正,确的生,产经营决策,生产层需要对生产运行,安全性预,测预警落实到装置粒度到实时,以,信息化手段,提升企业核心竞争力。,基础:中石化炼化企业的信息化建设进入集,成,与,深,化,应,用,阶,段,,,DCS,(,集,散,控,制,系,统,),+MES,(生产制造执行管理系统),+ERP,(企业,资源计划管理系统)的高度集成
2、。,问题:炼化企业的规模大、流程多、集中度高、,管理体系复杂等特点造成结构、半结构及非结,构生产经营数据庞大,如何发现内在规律,优,化业务流程。炼化企业在整合各类独立的应用,信息系统,建设智能工厂打破信息孤岛基础上,,,如何筛联价值数据,挖掘潜在需求,全局化,展,现业务趋势。,解决方法:利用大数据技术进行数据抽取、转,换、分析和模型化处理,从中提取辅助生产决,策的关键性数据,实现关系的挖掘和预测。,2,生产运行,经营分析,异常处理,?,?,数据,?,知识,?,决策!,有指,导意,义,发现隐藏问题,,定性问题定量,?,化,预测未来,发展,大数据,分析技术,与业,务相,关,可行,度高,可持,续优,
3、化,企业关注点 ?现状:炼化企业在现有良好精细化管理水平上 为深,大数据应用方案,预测需求,?,解决方案:,数据管理,原始数据,原始数据,原始数据,分析预测,决策调控,流程优化,有效数据,异常预警,趋势预测,结构调整,决策,/,执行者,异常处理,?,算法分类:,在大量数据中系统化的发现有用的关系,,通过建立拟合不同模型研究不同关系,,即实现经验规律的可重复性。,直到发现有用信息,即用于分析原因,解决问题,发现潜在价值,预见可能发生的某种,“坏的未来”并给出建议,即预测并提,供解决方案,算法分类,聚类,?,将数据库划分为不同组,群,群与群之间差别很,明显,而同一个群之间,的数据尽量相似。与分,类
4、不同,聚集前不清楚,要把数据分成几组,也,不清楚如何分。,分类,?,通过分析示例数据库中,的数据,为每个类别做,出准确的描述或建立分,析模型或挖掘出分类规,则,然后用这个分类规,则对其它数据库中的记,录进行分类。,3,关联,预测,算法说明,?,根据时间序列型数据,,?,寻找在同一个事件中出,由历史的和当前的数据,现的不同项的相关性,,去推测未来的数据。基,比如在一次购买活动中,于初步的神经网络预测,所买不同商品的相关性。,模型加入再训练方法持,本质是要在数据库中发,续改进模型精准度。,现强关联规则。,大数据应用方案 预测需求 ?解决方案: 数据管理 原始数据,大数据在化工厂的应用解决方案(化工
5、大数据)课件,大数据应用方案,-,茂名石化重整装置案例,(,1,)相关性分析,?,相关性分析是大数据分析中比较重要的一个分支,它可以在杂乱无章的数据中发现变量之间的,关联。因此利用相关性分析算法可以,挖掘传统经验之外的潜在因素,,最终实现,挖潜增效,。,研究,方法,数据采集,数据整定和标准化,相关性分析计算,原始数据,皮尔逊相关系数法,正相关系数,整定算法,相关数据,负相关系数,实现,过程,?,?,导入操作数据、质量数据、,腐蚀数据、成本数据、物,料平衡数据和能源数据等,所有历史数据到阿里云平,台,;,完成相关系统与阿里云的,接口,实现数据的实时导,入。,?,?,整定操作数据、质量数据、,腐蚀
6、数据、设备运行数据、,成本数据、物料平衡数据,和能耗数据等多维度数据;,按照时间维度对齐,然后,进行数据滤波、异常值剔,除和标准化。,?,?,利用皮尔逊相关系,数,算法,计算各个,指标,的相关系数矩阵,;,提取与关键指标强相,关的变量,包括正相,关的变量和负相关的,变量。,5,大数据应用方案-茂名石化重整装置案例 (1)相关性分析 ?相,相关性分析的应用效果,精细化管理越来越需要协同管理,而协同管理必定带来大量关联性分析需求。,这种需求可以是企业内部不同专业之间,也可能是不同企业跨专业之间。,操作条件和,原料性质对,产品收率的,影响,操作条件和,原料性质对,环保排放的,影响,操作条件和,原料性
7、质对,设备运行的,影响;,跨业务,域关联,分析,操作条件和,原料性质对,馏出口质量,的影响,操作条件和,原料性质对,单位成本的,影响,操作条件及,原料性质对,设备腐蚀的,影响,6,相关性分析的应用效果 精细化管理越来越需要协同管理,而协同管,相关性分析的应用效果,1,操作条件和原料性质对产品收率的影响,2,操作条件和原料性质对设备运行的影响,7,相关性分析的应用效果 1 操作条件和原料性质对产品收率的影响,相关性分析的应用效果,3,操作条件、原料性质和馏出口质量对设备腐蚀的影响,4,操作条件和馏出口质量对单位成本的影响,8,相关性分析的应用效果 3 操作条件、原料性质和馏出口质量对设,相关性分
8、析的应用效果,5,操作条件、馏出口质量对环保排放的影响,6,操作条件和原料性质对馏出口质量的影响,9,相关性分析的应用效果 5 操作条件、馏出口质量对环保排放的影,大数据应用方案,-,茂名石化重整装置案例,(,2,)单一指标异常侦测,?,紧扣总部“能效倍增计划”和“碧水蓝天计划”两大主题,并结合企业重点关注的指标,选取,了七个关键指标作为异常侦测的对象,其中辛烷值桶、能耗及芳差综合指标、纯氢收率和热效,率是炼油达标考核指标,烟气,SO,2,排放量和污水,COD,是环保指标,单位成本是效益指标。,数据整定和标准化,相关性分析和特性选择,预测模型搭建,单一指标异常判断,异常指标报警,研究,方法,原
9、始数据,皮尔逊相关系数法,SVM,预测模型,整定算法,正相关系数,计算预警红线,实现,过程,相关数据,?,负相关系数,?,模型校验,?,?,参数查询,?,原因分析,?,问题处理,?,?,整理操作数据、质量数据、,腐蚀数据、设备运行数据、,成本数据、物料平衡数据,和能耗数据等多维度数据;,按照时间维度对齐,然后,进行异常值剔除和标准化。,利用皮尔逊相关系数,算法,计算各个指标,的相关系数矩阵,提,取与七个关键指标强,相关的变量,实现特,性选择。,筛选出与预测指标强,相关且可调的操作变,量,作,为,SVM,预,测模,型,的,输,入,,,建,立,SVM,预,测,模,型,,,实,现对七个关键指标的,实
10、时计算。,使,用,箱,线,图,算,法,对,每,个,指,标,的,值,域,进,行,计,算,,,计,算,出,每,个,指,标,的,异,常,限,。,超,过,异,常,限,的,值,,,即判断该指标异常。,10,大数据应用方案-茂名石化重整装置案例 (2)单一指标异常,单一指标异常侦测应用效果,?,以企业实时数据为基础,基于,SVM,预测模型,进行数据的输入、输出,并以,箱线图进行展示。,异常点,七,个,指,标,异,常,值,判,断,计算数据时间范围为:,2014,年,10,月至,2015,年,5,月,单一指标异常侦测应用效果 ?以企业实时数据为基础,基于SVM,大数据应用方案,-,茂名石化案例,(,3,)多维
11、数据异常侦测,?,实际生产过程中,可能所有监测指标都在正常范围内,但整体上会偏离正常。比如:某个人体,检的所有指标都正常,但总体上处于亚健康的状态。因此有必要进行多维数据的异常侦测。,研究,方法,数据整定和标准化,抽取特征变量和降维,聚类分析,异常预测预警,指标数据,主成分分析法,聚类法,聚类法异常点监测,箱线图算法,多维度、趋势化分析异常,实现,过程,指标异常点判断,抽离主要的、无关联指标,K-mens,算法,聚类结果及优度,?,目标评估,?,方案制定,?,系统优化,?,进行七个指标的数据集,整理,并按照时间作为,统一维度对齐,然后进,行标准化处理,以消除,量纲和数量级的影响,?,利用主成分
12、算法抽取特,征变量,以实现用较少,的变量去解释大部分的,变量,达到降维的目的。,?,提取主成分作为聚,类的数据源,,,采,用,K-mens,算法进行聚,类,,以,寻找异常值。,?,计算某个每个观察样本与,其所在的聚类中心的欧式,距离,当该距离大于某个,阈值时,即可判断该样本,异常。阈值根据历史数据,统计选定。,12,大数据应用方案-茂名石化案例 (3)多维数据异常侦测,多维数据异常侦测应用效果,计算每个样本与其所属类别的聚类中心的欧式距离,当某个样本的距离大于,11/9,,配炼埃,阈值时,即可判断该样本为异常样本。,斯坡油,1,?,3,2,注:,+,(,加号,),代表异常点,?,(,星号,),
13、代表聚类中心,异,常,指,标,3/24,,配炼,巴西卢拉油,3/8,,,E717,内漏,样本,1,:,单指标无,异常,但多维分析,存在异常趋势,样,本,2,、,3,:,单,指,标异常,多维分析,同样存在异常趋势,1,2,3,结论:,可见单变量的异常侦测和多维变量的异常侦测在分析装置异常方面,互为补充,互为验证。,多维数据异常侦测应用效果 计算每个样本与其所属类别的聚类中心,大数据应用方案,-,茂名石化案例,(,4,)单一目标参数优化分析,?,在操作样本库中,搜索某类原料条件下目标的最优值及其对应的强相关的操作变量。可以挖掘,历史上,最,好的操作经验,比如挖掘经验丰富的操作人员的经验并固化下来,
14、且可与,RSIM,等优化软件互补使用。,研究,方法,重整原料数据,原料聚类分析,建立原料分类模型,分类模型的数据源,形成操作样本库,待优化目标强相关变量整理,参数寻优,不同类别原料目标参数最优值计算,主成分降维,聚类结果输出,SVM,分类器,实现,过程,分类结果评估,?,操作样本库生成,?,操作参数推荐,?,整理重整原料性质的历,史数据,首先经过预处,理和标准化,然后用主,成分降维,最后采用,K-,means,聚类,并输出,聚,类结果,?,利用原料的聚类结果,,建,立,SVM,分,类,模,型,,,并对模型的分类效果进,行评估。当有了新的批,次原料的性质数据,可,以自动进行分类。,将原料的类别和
15、其,对应的强相关的操,作参数导入操作样,本库,中,,以此作为,参数寻优的样本。,在操作样本库中,搜索不,同类别原料条件下目标参,数的最优值,以及对应的,强相关的操作变量的取值。,进而可以实现基于原料性,质和优化目标,推荐操作,参数。,14,大数据应用方案-茂名石化案例 (4)单一目标参数优化分,单一目标优化应用效果,?,在操作样本库中使用查询语句,搜索某类原料条件下,目标参数最优时,强,相关操作条件的取值。比如:在,e,类原料条件下,最优的纯氢收率为,3.392%,,,其对应的强相关的操作参数的取值见下表。,1,、根据原料类别,确定搜索条件,在操,作样本库中搜索目标参数最优时,强相关,操作参数
16、的取值。,2,、基于原料类别和,优化目标,推荐强相,关操作参数,30,单一目标优化应用效果 ?在操作样本库中使用查询语句,搜索某类,大数据应用方案,-,茂名石化案例,(,5,)多目标参数优化分析,?,根据选择的多个优化目标及其优化方向,确定某类原料条件下每个目标的最优值,并以这些最,优值和历史实际值分别作为多维空间中理论最优点和实际点的坐标。,选择离理论最优点最近,的,实际点作为优化结果。,研究,方法,建立操作样本库,确定理论最优点,选择多个优化目标及优化方向,计算欧式距离,整理不同原料类别下由待优化,变量值为坐标组成的样本点,参数寻优,按照欧式距离的大小排序,建立优化变量、原料类别及对应操作
17、变量集合,实现,过程,形成多目标优化操作样本库,确立每类原料条,件下各优化目标,的最优值,计算样本点,与理论最优点,的欧式距离,操作参数推荐,?,完成原料的聚类分析,,确定每天对应的原料类,别。将原料类别、所有,优化变量及其强相关操,作参数按天为单位写入,操作样本库中。,?,在操作样本库中搜索某,类原料条件下,各优化,变量的最优值,并将这,些值作为多维空间中理,论最优点的坐标。,?,计算某类原料条件,下多维空间中的优,化样本点与理论最,优点的欧式距离。,?,在操作样本库中,搜索不,同类别原料条件下,欧式距,离的最小值,,以及对应的,强相关的操作变量的取值。,进而可以实现基于原料性,质和优化目标
18、,推荐操作,参数。,16,大数据应用方案-茂名石化案例 (5)多目标参数优化分析 ?根,多目标优化应用效果,?,在操作样本库中,搜索不同类别原料条件下,欧式距离的最小值,,以及对应的强相,关的操作变量的取值。进而可以实现基于原料性质和优化目标,推荐操作参数。,对欧式距离按从小到大排序,确定最小距离样本作为优化样本。,优化样本,1,样本点,原料类别,纯氢产率,低硫液化气收率,燃料气单耗,重整汽油收率,欧式距离,2,a,4.0362139,0.408051453,0.050288315,90.23035255,0.479166783,3,a,3.9697842,0.340080972,0.0516
19、29265,90.18622053,0.578984526,4,a,3.9121334,0.356683345,0.051493443,90.15026447,0.635410454,1,a,3.830809,0.311651179,0.050302572,90.46376459,0.647438127,6,a,4.1264003,0.503603403,0.054528679,89.81878764,0.70938834,7,a,4.0945915,0.57745754,0.052688831,89.76294647,0.769286569,5,a,3.9398124,0.494639028
20、,0.048057041,89.84640457,0.783815043,8,a,4.1276415,0.50393138,0.05783485,89.70752919,0.810905065,9,a,4.4172044,0.530840676,0.056266014,88.80308645,1.657665121,2,推荐,A,类原料条件下,目标的最优值及对应的操作参数。,目标参数最优值,纯氢产率,低硫液化气收率,燃料气单耗,重整汽油收率,4.03621391,0.408051453,0.050288315,90.23035255,推,荐,操,作,参,数,换热器,E701,石脑油流量调节,重
21、整反应温度,R704,第四反应器入口压力,换热器,E701,石脑油流量调节,T701,稳定塔塔顶温度,T701,稳定塔塔底压力,F701,炉出口温度,F704,炉出口温度,175.0105814,525.1799787,0.36949156,175.0105814,58.26197232,0.80265751,527.4304937,535.8905265,多目标优化应用效果 ?在操作样本库中,搜索不同类别原料条件下,大数据应用方案,-,茂名石化案例,(,6,)非结构化数据分析,?,对调度交接班日志进行文本挖掘分析,并关联重整汽油收率、产氢量和重整汽油芳含等结构化,数据,挖掘出原油油种对重整汽
22、油收率等技术经济指标的影响规律,指导原油采购。,研究,方法,导出调度交接班日志,文本特征分析,非结构化数据转化为结构数据,提取原油油种和加工量数据,关联结构化数据,提取汽油收率等数据,计算及结果展示,计算出每种原油对应汽油收率等,指标的加权值,实现,过程,文本特征确定,1,、按天为单位,找出每套常减压对,应的油种,肯能有重复,需要保留。,2,、对于同一天有两个夜班日志的记,录,取有加工量的文本提取。,3,、对于按班配炼量的文本,按照两,班计算,。,将提取信息导入数据库中,关联原油油中和汽油收率等数据,结果展示,?,导出历史的调度交际班,日志,分析,5,套常减压的,原油油种及加工量的文,本特征,
23、确定提取关键,信息的规则。,?,按照天为单位,根据前,面确定的文本特征,提,取加工原油的油种及对,应的加工量,并存储到,数据库中。,?,按,天,为,单,位,,,从,MES,和,LIMS,系统中,提取汽油收率,、产,氢量和重整汽油芳,含等,数据,,,并,与原,油油种关联后存入,数据库中。,?,计算每种原油对应汽油收,率等指标的加权值,并按,照从大到小的顺序列,以,此结果指导原油的采购。,18,大数据应用方案-茂名石化案例 (6)非结构化数据分析,非结构化数据分析应用效果,对,13,年,-15,年的所有调度,交接班日志进行文本挖掘,,统计出茂名加工原油的油,种及其所占的比重并与结,构化数据关联分析
24、。,汽油收率最高的前,10,个油种,产氢量最大的前,10,个油种,重整汽油芳含最高的前,10,个油种,非结构化数据分析应用效果 对13年-15年的所有调度 交接班,大数据应用方案,-,茂名石化案例,(,7,)基于原料性质的预测分析,?,在历史数据的基础上,建立原料性质与汽油收率、产氢量、汽油干点、烷烃转化率和环烷烃转,化率的预测模型。输入原料性质数据,即可准确的预测上述,5,个指标的值以指导生产。,研究,方法,数据采集,原始数据,模型训练,模型预测,模型输入,模型输出,输入原料性质数据,SVM,模型训练,结果预测,实现,过程,?,?,导入操作数据、质量数据、,腐蚀数据、成本数据、物,料平衡数据
25、和能源数据等,所有历史数据到阿里云平,台;,完成相关系统与阿里云的,接口,实现数据的实时导,入。,?,?,从原始数据中导出原料性,质数据以及汽油收率等预,测指标数据分别作为,SVM,模型训练的输入和输出。,每天都要用新增的输入和,输出对模型进行再训练,,以保证模型的预测精度。,?,?,输入重整原料的,31,个,主要的化验分析数据;,预测投用该批次原料,后的重整汽油收率、,产氢量和转化率等技,术经济指标。,20,大数据应用方案-茂名石化案例 (7)基于原料性质的预测分,基于原料性质的预测分析应用效果,?,在投入原料之前,输入原料的化验分析数据到预测模型中,模型自动计算出投用,该批次原料后,汽油收
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 化工厂 应用 解决方案 化工 课件
链接地址:https://www.31ppt.com/p-1748095.html