实际晶体结构中的位错ppt课件.ppt
《实际晶体结构中的位错ppt课件.ppt》由会员分享,可在线阅读,更多相关《实际晶体结构中的位错ppt课件.ppt(97页珍藏版)》请在三一办公上搜索。
1、第4章 实际晶体结构中的位错,4.1 实际晶体中位错的分类4.2 实际晶体中位错的柏氏矢量4.3 位错反应4.4 面心立方晶体中的位错4.5 体心立方晶体中的位错4.6 密排六方晶体中的位错,4.1 实际晶体中位错的分类,简单立方晶体中位错的柏氏矢量b总是等于点阵矢量。但实际晶体中,位错的柏氏矢量b除了等于点阵矢量外,还可能小于或大于点阵矢量。通常把柏氏矢量等于单位点阵矢量的位错称为“单位位错”;把柏氏矢量等于点阵矢量或其整数倍的位错称为“全位错”,全位错滑移后晶体原子排列不变;把柏氏矢量不等于点阵矢量整数倍的位错称为“不全位错”,不全位错滑移后原子排列规律发生变化。,实际晶体结构中,位错的柏
2、氏矢量不能是任意的,它要符合晶体的结构条件和能量条件。晶体的结构条件是指柏氏矢量必须连接一个原子平衡位置到另一平衡位置。从能量条件看,由于位错能量正比于b2,b越小越稳定,即单位位错是最稳定的位错。 柏氏矢量b的大小和方向用b=Cuvw表示,其中:C为常数,uvw为柏氏矢量的方向,柏氏矢量的大小为: 。表4.1给出典型晶体结构中,单位位错的柏氏矢量及其大小和方向。,4.2 实际晶体中位错的柏氏矢量,表4.1 典型晶体结构中单位位错的柏氏矢量,位错反应就是位错的合并(Merging)与分解(Dissociation),即晶体中不同柏氏矢量的位错线合并为一条位错线或一条位错线分解成两条或多条柏氏矢
3、量不同的位错线。 位错使晶体点阵发生畸变,柏氏矢量是反映位错周围点阵畸变总和的参数。因此,位错的合并实际上是晶体中同一区域两个或多个畸变的叠加,位错的分解是晶体内某一区域具有一个较集中的畸变,松弛为两个或多个畸变。,4.3 位错反应(Dislocation Reaction),A 几何条件 根据柏氏矢量的守恒性,反应后诸位错的柏氏矢量之和应等于反应前诸位错的柏氏矢量之和,即 (4-1)B 能量条件 从能量角度要求,位错反应必须是一个伴随着能量降低的过程。由于位错的能量正比于其柏氏矢量的平方,所以,反应后各位错的能量之和应小于反应前各位错的能量之和,即 (4-2) 分析位错反应时,一般先用几何条
4、件确定位错反应是否可以进行,然后再利用能量条件来判定位错反应的方向。,位错反应能否进行,取决于下列两个条件:,4.4 面心立方晶体(Face-centered Cubic Crystal)中的位错,4.4.1 堆垛层错(Stacking Fault),图4.1 面心立方晶体中(111)面的正常堆垛,图4.1是面心立方晶体密排面(111)的正常堆垛示意图。,在面心立方晶胞中,表示了A、B、C三个相邻的(111)面上的原子分布。(a)、(b)、(c)三图分别表示了A层、AB两层及ABC三层原子面的堆垛情况。如果把原子中心投影到(111)面,可见三层相邻面上的原子中心在(111)面上的投影位置并不相
5、同,如图4.1(c)所示。底层为A层,表示B层原子中心的投影位置,表示C层原子中心的投影位置。如果把单位晶胞(Unit Cell)中通过坐标原点O的(111)面上的原子,也作如上投影,那么可以看到,该面上原子中心投影位置与C层原子中心投影位置是相同的。由于晶体点阵的对称性和周期性,面心立方晶体(111)密排面上的原子在该面上的投影位置是按A、B、C三个原子面的原子投影位置进行周期变化的。可以记为:ABCABCA,这就是面心立方晶体密排面的正常堆垛顺序。如果用记号表示原子面以AB、BC、CA顺序堆垛,表示相反的顺序,如BA、AC、CB,那么面心立方晶体密排面的正常堆垛又可以表示为:,如图4.1(
6、d)所示。,实际晶体结构中,密排面的正常堆垛顺序有可能遭到破坏和错排,称为堆垛层错,简称层错。,图4.2表示面心立方晶体形成堆垛层错的方式。,图4.2 面心立方晶体中的堆垛层错(a)抽出型;(b)插入型,若将正常堆垛顺序变成ABCBCA(即),其中箭头所指相当于抽出一层原子面(A层),故称为抽出型层错,如图4.2(a)所示。 若在正常堆垛顺序中插入一层原子面(B层),即可表示为ABCBABC,相当于抽出A、C两层,可表示为ABCBABC(即),其中箭头所指的为插入B层后所引起的二层错排,称为插入型层错,如图4.2(b)所示。两者对比可知, 一个插入型层错相当于两个抽出型层错。,形成层错时几乎不
7、产生点阵畸变,但它破坏了晶体的完整性和正常的周期性,使电子发生反常的衍射效应,故使晶体的能量有所增加,这部分增加的能量称为堆垛层错能,用 表示。从能量的观点来看,晶体中出现层错的几率与层错能有关,层错能越高,则出现层错的几率越小。如在层错能很低的奥氏体不锈钢中,常可看到大量的层错,而在层错能高的铝中,就看不到层错。,4.4.2 不全位错(Partial Dislocation),若堆垛层错不是发生在晶体的整个原子面上而只是部分区域存在,那么,在层错与完整晶体的交界处就存在柏氏矢量不等于点阵矢量的不全位错。在面心立方晶体中有两种重要的不全位错:肖克莱(Shockley)不全位错和弗兰克(Fran
8、k)不全位错。A 肖克莱(Shockley)不全位错 图4.4为肖克莱不全位错的刃型结构。,图4.4 面心立方晶体中的纯刃型肖克莱不全位错,上半图是面心立方晶体的(0 1)面,圆圈代表前一个面上原子排列的位置,黑点代表后一个面上原子排列的位置。原子的连线看起来似乎是一个平面上的菱形,实际上是一前一后两个平面上相邻原子的连线。,上半图是面心立方晶体的(0 1)面,圆圈代表前一个面上原子排列的位置,黑点代表后一个面上原子排列的位置。原子的连线看起来似乎是一个平面上的菱形,实际上是一前一后两个平面上相邻原子的连线。 下半图是把上半图中A层与C层在(111)面上作投影。分层使用了不同的符号,代表A层,
9、原子呈密排,代表紧接A层之下的C层,也是密排的。让A层的右半部滑移至B层原子的位置,其上部的各层也跟着移动,但滑移只限于一部分原子,即右半部原子。于是右半部的滑移面上发生了层错,左半部则没有移动,所以也没有层错,在两者的交界处发生了原子的严重错排,图中滑移后的原子位置用虚线连接。,图4.4,下半图是把上半图中A层与C层在(111)面上作投影。分层使用了不同的符号,代表A层,原子呈密排,代表紧接A层之下的C层,也是密排的。让A层的右半部滑移至B层原子的位置,其上部的各层也跟着移动,但滑移只限于一部分原子,即右半部原子。于是右半部的滑移面上发生了层错,左半部则没有移动,所以也没有层错,在两者的交界
10、处发生了原子的严重错排,图中滑移后的原子位置用虚线连接。,图4.4 面心立方晶体中的纯刃型肖克莱不全位错,不全位错可以认为就在上半部的图中的A层上的两个星号之间,此时在下半图上看到对应的滑移后的A层原子位置,在用虚线连接起来的六角形中,越接近位错的部分畸变越大 。,上半图中左边的晶体按ABCABC正常顺序堆垛,而右边晶体是按ABCBCAB顺序堆垛,即有层错存在,层错与完整晶体的边界就是肖克莱位错,它位于一个平面上。图中下半部的右上角处的箭头符号即为不全位错的柏氏矢量 ,它与位错线互相垂直,因此它是纯刃型的肖克莱不全位错。,不全位错可以认为就在上半部的图中的A层上的两个星号之间,此时在下半图上看
11、到对应的滑移后的A层原子位置,在用虚线连接起来的六角形中,越接近位错的部分畸变越大 。 上半图中左边的晶体按ABCABC正常顺序堆垛,而右边晶体是按ABCBCAB顺序堆垛,即有层错存在,层错与完整晶体的边界就是肖克莱位错,它位于一个平面上。图中下半部的右上角处的箭头符号即为不全位错的柏氏矢量 ,它与位错线互相垂直,因此它是纯刃型的肖克莱不全位错。,图4.4,根据其柏氏矢量与位错线的夹角关系,它既可以是纯刃型的,也可以是纯螺型的,见图4.5。,图4.5 面心立方晶体中的纯螺型肖克莱不全位错,实线相连的位置代表滑移前的位置,虚线相连的代表滑移后的位置,滑移只在图中下半部进行,交界区域则是一段纯螺型
12、的肖克莱不全位错。,肖克莱位错还可以是混合型的,见图4.6。,图4.6 面心立方晶体中的混合型肖克莱不全位错,肖克莱不全位错可以在其所在的111面上滑移,滑移的结果使层错扩大或缩小,但是即使是纯刃型的肖克莱不全位错也不能攀移,这是因为它有确定的层错相联,若进行攀移,势必离开此层错面,故不可能进行。,B 弗兰克(Frank)不全位错,图4.7为抽出半层密排面形成的弗兰克不全位错。抽去B层的右边一部分而让其上面的C层垂直落下来,由于B层的右边部分抽去而左边部分没有抽去,靠近层错的边沿位置的原子畸变大,但远离边沿的原子由于垂直落下,故原子排列虽发生层错,但仍处于密排位置,并不发生畸变。这些畸变处的原
13、子即组成不全位错。,图4.7 抽出半层密排面形成的弗兰克不全位错,图4.8 插入半层密排面形成的弗兰克不全位错,图4.8为插入半层密排面形成的弗兰克不全位错。在右半部的A、B层之间插入一部分C层原子,构成不全位错。,与抽出型层错相联系的不全位错称为负弗兰克不全位错,而与插入型层错相联系的不全位错称为正弗兰克不全位错。它们的柏氏矢量都属于 ,且都垂直于层错面111,但方向相反。弗兰克不全位错属纯刃型位错,这种位错不能在滑移面上进行滑移运动,否则将使其离开所在的层错面,但能通过点缺陷的运动沿层错面进行攀移,使层错面扩大或缩小,所以弗兰克不全位错又称不滑动位错或固定位错,而肖克莱不全位错则属于可动位
14、错。,C 两种不全位错的特征,不全位错的一个重要特征就是它的柏氏矢量。求不全位错的柏氏矢量方法和求全位错的柏氏矢量方法相似。首先,设定一个位错线的方向,如从纸后走向纸面。然后,环绕这个不全位错做一个柏氏回路,回路的方向服从右手螺旋法则。但必须注意不全位错所在晶体中的回路必须从堆垛层错上出发,而在全位错的晶体中的回路却可以从任何点出发,只要不碰到缺陷即可。,图4.9为肖克莱不全位错,可见作为参考的完整晶体的回路的最后一步,就是肖克莱位错的柏氏矢量。肖克莱位错的矢量方向只与滑移面的上半晶体受压或受张情况有关,而与层错位于位错线之左或之右无关。,图4.9 肖克莱刃型位错的柏氏回路和矢量,图4.10为
15、正弗兰克不全位错,图中画的是一个堆垛层错在位错线之右的刃型位错,柏氏矢量方向向下,即 。若堆垛层错在位错线之左,则柏氏矢量方向向上,即 。,图4.10 正弗兰克位错的柏氏回路和矢量,应当指出,在图4.10的完整晶体中,柏氏回路自1走到6后,并不是把6与1直接连接起来,因为在有位错的晶体中,6至1的连线与1至2的连线对称于通过1的水平线,所以在参考晶体中也要使6至7的连线和1至2的连线成为对称,于是最终的代表柏氏矢量的从7至1的闭合线段为垂直于水平方向的线 。同理,也可以求得负弗兰克位错的柏氏矢量。,1)不全位错的四周不完全是完整的结构,有一部分有 层错;2)不全位错的柏氏回路必须从层错开始,回
16、路最后还 要穿过层错;3)不全位错的柏氏矢量不是完整的最短点阵矢量;4)不全位错的柏氏矢量也有守恒性。,总结不全位错的柏氏矢量的特点如下:,两种不全位错都只能在层错面上存在,它们的运动也限制在这个面上。肖克莱位错可以滑移,但不能攀移;弗兰克位错则相反。但要注意,纯螺型的肖克莱位错不能交滑移,只能在层错面上滑移。弗兰克位错只有刃型的,其柏氏矢量与滑移面垂直,只能攀移,而且是在密排面上攀移,而不是垂直于密排面攀移。面心立方晶体中两种不全位错的特征见表4.2。,表4.2 面心立方晶体中两种不全位错的特征,4.4.3 扩展位错 (Extended Dislocation),A 汤普森(Thompson
17、)记号 如图4.11所示,在面心立方点阵中取出单位晶胞的小四面体,见图4.11(a)。将D取在单位晶胞的原点(0,0,0),A取在(1/2,1/2,0),B取在(1/2,0,1/2),C取在(0,1/2,1/2)。以A,B,C,D为顶点连成一个由4个111面组成的,且其边平行于方向的四面体,这就是汤普森四面体。如果以,分别代表与A,B,C,D点相对面的中心,见图4.11(b)。把4个面以三角形ABC为底展开,得图4.11(c)。,图4.11 汤普森四面体及记号,1) 四面体的4个面为111晶面族构成。2) 四面体的6个棱边代表12个 晶向,即为面心立方晶体中12个全位错的柏氏矢量。3) 每个面
18、的顶点与其中心的连线代表24个 型的滑移矢量,相当于面心立方晶体中的24个肖克莱不全位错的柏氏矢量。4) 4个顶点到它所对的三角形中心点的连线代表8个 型的滑移矢量,相当于面心立方晶体中的8个弗兰克不全位错的柏氏矢量。5) 4个面的中心连线即 为 型的压杆位错。,由图4.11可知:,有了汤普森四面体,面心立方晶体中各类位错反应尤其是复杂的位错反应都可极为简便地用相应的汤普森记号来表达。,图4.12 全位错分解示意图,B 扩展位错,面心立方晶体中能量最低的全位错是处在111面上的柏氏矢量为 的单位位错。若单位位错 在切应力作用下沿着(111)晶面的 方向滑移时,则原子从B1位置滑动到相邻的B2位
19、置,需要越过A层原子的“高峰”,这需要提供较高的能量,见图4.12。,但如果滑移分为两步,先从B1位置沿A原子间的“低谷”滑移到邻近的C位置,即 ;然后再由C位置滑移到B2位置,即这种滑移比较容易。显然,第一步滑移造成了层错,层错区与正常区之间必然会形成两个不全位错。也就是说,全位错的运动由两个不全位错的运动来完成,即 。,这个位错反应从几何条件和能量条件来判断均是可行的,如下所示:几何条件为: ,能量条件为: 均满足,能反应。通常把一个全位错分解为两个不全位错,中间夹着一个堆垛层错的位错组态称为扩展位错,图4.13即为 扩展位错的示意图。,图4.13 面心立方晶体中的扩展位错,扩展位错的宽度
20、d可以根据两个肖克莱不全位错间的斥力与位错的层错能平衡求得:,(4-3),K一与全位错类型有关的常数; 一全位错线与它的柏氏矢量之间的 夹角;一层错能。,由(4-3)式可知,扩展位错的宽度d与晶体的切变模量和位错的柏氏矢量b成正比,与单位面积层错能成反比。即层错能越大,扩展位错的宽度越小。具有面心立方结构的不同金属它们的层错能是不同的。例如,铝的层错能很高,故其扩展位错的宽度很窄,仅12个原子间距,实际上可认为铝中不会形成扩展位错;而奥氏体不锈钢的层错能很低,其扩展位错的宽度可达十几个原子间距。,当一个螺型单位位错分解为扩展位错后,由于两个肖克莱不全位错不能离开层错面,因而扩展位错要实现交滑移
21、首先必须束集成单位位错,然后才能进行交滑移。,图4.14 扩展位错的交滑移过程,图4.14为扩展位错的交滑移过程。扩展位错的束集不是在整条位错线上同时进行,而是先在位错线上某点A开始,然后扩展成一线段AA,被束集的单位位错进行交滑移,并且在新的滑移面上重新扩展,继续滑移,逐步把扩展位错转移到新的滑移面上。,从扩展位错交滑移可知,层错能低的金属,扩展位错宽度大,束集困难,不易交滑移;而层错能高的铝,扩展位错宽度小,束集容易,因而很容易交滑移。,4.4.4 面角位错 (Lomer-Cottrell Dislocation),如图4.15所示,在(111)和 面上分别有两个全位错 和 ,它们在各自的
22、滑移面分解为扩展位错:,两个扩展位错各在自己的滑移面上相向移动,当每个扩展位错中的一个领先不全位错达到滑移面的交线时,就会通过位错反应,生成新的位错:,图4.15 面角位错的形成过程,这个新位错 是纯刃型的,其柏氏矢量位于(001)滑移面上,但面心立方晶体的滑移面是111,不易滑移,只能攀移。因此,这个位错是固定位错,又称压杆位错。,压杆位错带着两片分别位于(111)和 面上的层错区,以及 和 两个不全位错。这种形成于两个111面之间的面角上,由三个不全位错和两片层错所构成的位错组态称为面角位错,也称为罗曼一柯垂尔(Lomer-cottrell)位错。,4.5 体心立方晶体(Body-cent
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际 晶体结构 中的 ppt 课件
链接地址:https://www.31ppt.com/p-1745825.html