飞行时间系统是北京谱仪上区分粒子的主要装置.docx
《飞行时间系统是北京谱仪上区分粒子的主要装置.docx》由会员分享,可在线阅读,更多相关《飞行时间系统是北京谱仪上区分粒子的主要装置.docx(15页珍藏版)》请在三一办公上搜索。
1、北京正负电子对撞机重大改造工程初步设计4.6 飞行时间计数器飞行时间计数器置于主漂移室和晶体量能器之间(见图4.6-1),桶部TOF的接收度为0.83,端盖TOF的接收度从0.85到0.95,基本覆盖了主漂移室和量能器的接收度。飞行时间计数器用来测量带电粒子在主漂移室内的飞行时间,主要功能是通过所测量的飞行时间信息,结合主漂移室测得粒子的动量和径迹,从而辨别粒子的种类;同时它也参加第一级触发判选;而且可以利用不同探测器输出信号之间的时间关系来排除宇宙线本底。图4.6-1 BESIII总体框图。桶部和端盖TOF都是置于主漂移室和量能器之间,前者将固定于主漂移室上,后者固定到端盖量能器上。 飞行时
2、间计数器主要物理目标是粒子鉴别,其能力大小主要由相同动量粒子的飞行时间差和飞行时间计数器的时间分辨率所决定。飞行时间差随飞行时间计数器的内半径的变大而增加;时间分辨率分别由正负电子对撞的起始时间推算精度和粒子打到飞行时间计数器后测量的截止时间的精度决定,其中飞行时间计数器的本征时间分辨率是主要因素。4.6.1 TOF时间分辨率分析每层TOF的时间分辨率受多种因素影响,总的时间分辨率可表示为:1) , TOF 本征时间分辨。TOF 本征时间分辨与闪烁体和光电倍增管的性能、参数直接相关,如下面的公式所示1: 其中,是闪烁体的衰减时间,L是击中位置到光电倍增管的距离,是光电倍增管中光电子的渡越时间涨
3、落,是光电子数。 与闪烁体的光产额、厚度、衰减长度、光传输距离和光电倍增管的量子效率都有关:其中,是光波长, 是单位厚度闪烁体的光产额, 是粒子穿过闪烁体的厚度,闪烁体的衰减长度, 是光电倍增管的量子效率函数。根据我们和BELLE的经验,我们希望单层TOF的本征时间分辨率达到80ps(参见后面4.6.4 and 4.6.5)。2) , 束团时间不确定性。束团时间的不确定性与加速器储存环中的高频时钟和稳相精度有关。根据BEPCII的设计指标,其高频时钟周期为2ns,稳相精度为1,所以本征的束团时间误差为ps。考虑到在读出过程中,时钟信号传输和寄存等会造成时间晃动,我们希望这项误差达到20ps以内
4、。3) , 束团长度形成的对撞时刻的不确定性。正负电子两个束团都有一定长度,这样它们相撞的准确时刻无法知道。根据BEPCII的设计指标,束团长度为1.5cm,即50ps。两束团相撞可以简化考虑为一个静止、一个运动,相撞发生的几率是两个束团密度的乘积。这样,如果考虑两个束团密度都按高斯分布,其标准偏差将不确定性减少倍,即 35ps。 4) , 来源于粒子击中闪烁体的Z向定位的不确定性。在测量飞行时间时,闪烁体中的光传输时间必须要扣除。其精度取决于由MDC径迹重建外推的闪烁体的Z向定位。根据模拟,其精度为几个毫米,考虑到闪烁体折射率为1.5, 这项误差约为25ps。5) , 来源于电子学时间测量。
5、TOF电子学时间测量将使用CERN HPTDC,其设计指标为25ps。6) , 来源于预期飞行时间不确定性。TOF粒子鉴别能力受测量与预期的粒子飞行时间之差影响。预期的粒子飞行时间的精度取决于径迹长度和动量的精度,即MDC的性能。根据模拟,径迹长度的重建误差为毫米量级。在1Tesla时,MDC动量分辨率为0.6%。所以,我们估计的误差约为 30ps。7) ,来源于电子学阈效应的时间修正过程。T(ns)V(mv)图 4.6-2 过阈甄别时间测量的修正TOF 的时间测量将采用过阈甄别,这样对幅度不同的信号将产生测量误差,所以在刻度重建过程里将利用幅度值进行修正,修正的精度取决于幅度测量的精度和阈值
6、的高低。为提高修正精度并压低本底,我们将采用四阈读出的方法,依次可能为200mV、150mV、 100mV、 50mV。考虑上升时间为3ns,幅度测量精度为 4mV, 此项误差将在10ps左右(见图4.6-2)。 TOF的飞行时间测量精度估计详见下表4.6-1:表4.6-1 TOF时间分辨率分析时间分辨率项目桶部时间分辨率端盖时间分辨率单层TOF本征时间分辨率8090ps80ps束团时间的不确定性20ps20ps束团长度的不确定性15mm,35ps15mm,35psMDC外推的定位精度5mm,25ps10mm,50ps电子学测量的精度25ps25ps预期飞行时间精度30ps30ps时幅修正10
7、ps10ps单层TOF总时间分辨率100110ps110120ps双层TOF总时间分辨率8090ps4.6.2 粒子鉴别能力根据TOF的几何尺寸,可以计算出相同动量K/p粒子的飞行时间差T,再根据TOF的时间分辨率sTOF,按照理想的高斯分布,我们可以估算出K/p分辨能力:T3.38sTOF,正确率95.4%,即满足2s鉴别能力;T5.60sTOF,正确率99.7%,即满足3s鉴别能力。由于随粒子击中闪烁体的位置距光电倍增管距离的不同而得到的时间分辨率不同,在靠近光电倍增管一端时间分辨好,在中间时间分辨差。我们根据实验经验,初步确定时间分辨随粒子方向的极角的变化关系为:其中,是极角,是打中闪烁
8、体中心位置时TOF的时间分辨率。对于TOF,测量的相同动量K/p粒子的飞行时间差T是指它们在主漂移室内的飞行时间差,即: 。这里,一层TOF电子和muon的设计分辨率为100110ps;由于K/p粒子的强相互作用,并根据BESI、BESII和BELLE的飞行时间计数器的经验,K/p粒子的时间分辨比电子和muon要差约20%。所以,。同理,对于双层TOF,。据此,图4.6-3给出了一层和双层TOF的K/p分辨能力。在2s鉴别能力的要求下,K/p分辨分别可以达到0.8GeV/c和0.9GeV/c。图 4.6-3 K/p分辨能力关于端盖TOF,我们计划使用扇型的塑料闪烁体加光电倍增管测量。端盖闪烁体
9、的宽度增加,但长度减少为约400mm,预计其本征时间分辨仍然可以达到80ps。考虑达到端盖附近的粒子穿越主漂移室的层数较少,所以由主漂移室径迹重建的外推定位不如桶部准确,其误差估计为10mm,导致时间不确定性为50ps。再把束团长度、多束团间隔、电子学测量精度等影响都考虑后,端盖飞行时间计数器的总时间分辨率为110ps。4.6.3 BESII和BELLE的经验BESII2的飞行时间计数器始建于1994年,于1996年底建成。其桶部由48个闪烁计数器组成,每个闪烁计数器的塑料闪烁体长2840mm,宽1560mm,厚50mm,其材料为Bicron 公司生产的BC408。每个闪烁体的两端经鱼尾形光导
10、与光电倍增管相连,其有效收光面积仅为16%(见图4.6-4)。光电倍增管采用的是HAMAMASTU公司生产的R2490-5,它是Fine Mesh结构的抗磁场光电倍增管,其增益为3106 (0T),1106 (0.5T)。图4.6-4 BESII的TOF探测器的结构示意图BESII的飞行时间计数器的总时间分辨率为180ps,其中本征时间分辨为135ps,其它由束团长度等引起的时间不确定性为125ps。由于BESII的飞行时间计数器的内半径较大,达1150mm,所以在总时间分辨率为180ps情况下,对于K/p的分辨(2s)的动量上限为0.8GeV/c,图4.6-5是BESII上测得的各粒子速率与
11、动量的关系。图4.6-5 粒子动量与由TOFII测量的速度的关系BELLE的TOF系统3由做触发用的TSC和做测量时间用的TOF两部分组成。其TOF由塑料闪烁体直接连接光电倍增管构成,有效收光面积达60%。塑料闪烁体采用BC408,长2550mm,宽60mm,厚40mm。光电倍增管采用R6680,由于它要工作于1.5T 的强磁场中,其光电倍增管是与HAMAMASTU公司合作专门研制的,具有24个Fine Mesh 的打拿极,在1.5T 的强磁场中的增益仍能达到3106 。最后,BELLE的TOF的总时间分辨率达到100ps,其中本征时间分辨率达到80ps。总体来说,TOF要达到高的时间分辨率,
12、主要由闪烁体光产额、上升时间、厚度、衰减长度,光电倍增管的有效收光面积、量子效率、频谱响应、时间响应、增益大小、抗磁性能等决定。但是,为什么BESII的TOF的本征时间分辨为135ps,BELLE的TOF的本征时间分辨率达到80ps?它们的主要差别在于前者在闪烁体和光电倍增管之间有一个收光光导,有效收光面积远小于后者,所以要达到新飞行时间器的设计要求,闪烁体和光电倍增管要直接耦合,并尽量增大有效收光面积。(a)(c)(b)图4.6-6 BC408性能:(a)发射谱 (b)各种粒子的光输出 (c) 各种粒子的射程。4.6.4 塑料闪烁体和光电倍增管的选择4.6.4.1 塑料闪烁体:BC408 还
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 飞行 时间 系统 北京 上区 粒子 主要 装置

链接地址:https://www.31ppt.com/p-1744502.html