项目名称:高性能滚动轴承基础研究首席科学家:王煜西安交.docx
《项目名称:高性能滚动轴承基础研究首席科学家:王煜西安交.docx》由会员分享,可在线阅读,更多相关《项目名称:高性能滚动轴承基础研究首席科学家:王煜西安交.docx(35页珍藏版)》请在三一办公上搜索。
1、项目名称:高性能滚动轴承基础研究首席科学家:王煜 西安交通大学起止年限:2011.1至2015.8依托部门:教育部二、预期目标1) 总体目标:本项目瞄准高速铁路、精密机床、风力发电机等重大装备关键零部件轴承的设计、制造与使用所面临的关键共性问题,揭示高速重载精密轴承服役性能形成与演变规律、复杂工况下宏微观动态润滑接触机制、多重润滑膜生成与失效机理等,发展面向预定性能的控形控性制造方法和在线调控技术,从而建立高速重载精密轴承设计、制造、装配以及使用的新原理、新方法和新工艺等。通过本项目研究,提升我国高速重载精密轴承设计制造的自主创新能力,为我国轴承工业提供原创性核心技术和若干高性能轴承技术原型,
2、培养一批理论基础深厚、创新能力强的学术带头人和研究骨干,形成一支朝气蓬勃的研究团队,建立轴承创新研究平台,显著提升我国轴承设计制造的技术水平,解决我国重大装备制造对高性能轴承需求的瓶颈问题。2) 五年预期目标:围绕复杂工况下高性能轴承关键科学问题,发展基础理论、核心技术,获得有国际影响的创新性研究成果,为我国轴承技术的发展奠定坚实的理论与人才基础,主要预期目标包括:(1)理论层面l 揭示高速重载精密轴承多场耦合作用下动态接触行为对界面演化过程影响的科学本质,建立新的考虑宏微观特征的接触力学理论;l 建立滚动轴承运动副界面多因素耦合润滑分析模型,揭示高速重载滚动轴承的热失稳机制;l 揭示轴承多重
3、润滑膜生成与失效机理,建立极端条件及多变工况中润滑材料性能优化及可靠性增长的相关理论;l 发展基于热力学、动力学和晶体学的微观组织调控基础理论;l 揭示轴承滚道轧制过程中组织状态遗传演化机理,建立高性能轴承基体组织和滚道表面状态可控性轧制成形理论;l 揭示复杂工况下滚动轴承服役性能创成机理。(2)技术层面l 轴承界面系统复杂性摩擦学行为大规模数值模拟技术;l 新型润滑剂制备技术,提供23种新型高性能滚动轴承润滑材料;l 轴承组件的三种控形控性形制造技术:面向复相组织和碳化物形态及分布控制的淬火/分配/回火(QPT)热处理新工艺、控形控性轧制成形技术、表面完整性的可控磨削和强化技术;l 轴承摩擦
4、界面多重润滑膜构建技术;l 服役状态的在线监测与服役性能的在线调控技术;l 建立实验测试平台:轴承摩擦学行为长期演化测试平台、轴承润滑材料使役行为与失效机制研究的精密试验平台、套圈组织性能可控性轧制成形实验平台、工艺参数可控的轴承滚道成形磨削实验平台、磨削力和磨削温度的同时在线测试平台、轴承服役性能在线测试与动态控制平台、轴承运动副动态润滑油膜测量平台;l 提供面向高速铁路、高档数控机床的滚动轴承技术原型。(3)研究成果与人才培养: 拟在国内外重要刊物上发表论文150篇以上(其中SCI/EI论文110篇以上),撰写专著1部以上,申请专利30项左右。组成一支富有拼搏意识、创新能力强的研究队伍,培
5、养博士后、博士和硕士90名左右。三、研究方案1) 学术思路如图1所示,本项目以解决重载高速精密滚动轴承的基础问题、形成若干具有自主知识产权的核心技术为目标,重点围绕三个关键科学问题开展多学科交叉基础研究,在高性能滚动轴承共性基础理论取得突破后,提出轴承设计、制造、装调等核心技术问题的解决方法,发展具有自主知识产权的关键制造技术原型,形成我国高性能滚动轴承的自主原创性成果。图1 项目研究学术思路2) 技术途径通过对动态接触、润滑理论的研究,揭示服役工况下的滚动轴承多场耦合作用的科学本质,研究制造过程中轴承材料的组织状态、工件表层金属组织和残余应力分布特性以及使用过程中服役性能的创成机制,为高性能
6、滚动轴承的精度设计、可控制造与应用提供理论依据与技术支撑。在对科学问题的研究中,注重理论与实验相结合。通过构建采用新技术、新原理和新思路的高性能滚动轴承实验方法和测试平台,采集轴承服役过程中轴承状态信息,构建状态信息数据库,并采用有效数据处理方法,分析滚动轴承服役过程中各组件、各耦合场的物理与化学行为特征;同时,从若干力学的基本方程,结合适当的数学方法,建立复杂工况作用下的轴承制造与服役过程的数学、力学行为描述模型,利用专业或开发的分析软件,实现对轴承制造与服役过程中各种现象和行为的仿真与分析,深入系统全面地开展理论与实验的比较研究,建立完整的数据系统,采取正问题和反问题结合的方法,完成本项目
7、的研究。在滚动轴承基础理论研究成果上,课题将结合国内重大装备制造业(高速铁路、高档数控机床)的重要需求,开发高速重载精密高性能轴承的技术原型。具体技术路线如下:(1)在轴承复杂界面系统动态接触方面首先建立新的滚动体弹性系统理论、高精度变形计算模型以及大规模数值模拟方法,并耦合其他多物理模型,建立研究轴承滚动体与滚道界面多场耦合作用下动态微接触理论。然后,面向高速重载精密轴承微小空间强场耦合相互作用本质问题,在不同域及时间尺度上,研究宏观复杂全域耦合场与微幅复杂局域耦合变化场,建立轴承界面系统强场耦合动态行为研究的有效模拟平台。揭示高速重载界面系统摩擦、磨损机理及对界面耦合场长期发展演化的影响。
8、在此基础上,建立在耦合磨粒的润滑条件下的接触理论与材料表面损伤、失效的理论模型及预测方法。继而,通过对滚动体与滚道表面几何拓扑结构与耦合场的适应性研究,阐明高速重载精密轴承设计、制造关键尺寸参数的控制机制。研究高速重载精密轴承复杂界面微接触区域演化、动态摩擦行为以及界面系统的摩擦能量耗散问题,阐明润滑介质、运动及结构与摩擦损耗的关系,指导轴承设计。另一方面,建立考虑循环载荷或润滑温升影响的滚动轴承损伤过程数学模型及断裂损伤过程的数学模型,根据轴承接触疲劳性能,综合运用摩擦学原理和润滑理论提出一种应力破坏累积计算方法,通过试验验证该寿命模型。通过建立滚动轴承摩擦力与磨损测试试验台,验证动态接触理
9、论与磨损预测模型。本课题面向界面耦合场演变规律,重点发展耦合系统作用下的微接触理论与失效机理分析;研究滚动体与滚道接触形式与宏微观拓扑结构特征,提出新的摩擦、磨损及润滑研究方法,为认识高速重载精密轴承核心技术科学本质提供重要的理论依据。(2)在高性能轴承润滑机理与热失稳方面本课题采用数值模拟和实验研究相结合的方法。通过模拟实验,获得表面粗糙度、温升等对润滑性能的影响规律,进而考察润滑膜热失效的发生、表面膜的吸附和解附以及对摩擦系数的影响,从而实验确定油膜破坏的临界温度。同时发展基于多光束干涉法的轴承接触副表面润滑介质分布的测量方法,实现轴承油膜特性和润滑介质分布的动态测量。在理论方面,结合摩擦
10、学实验结果,首先建立全尺度多因素耦合宏微观润滑接触模型,以实验获得的润滑介质分布规律为输入条件,按实际运行条件进行数值分析和计算机模拟,系统研究表面微观特征、表面变形、热效应等对润滑性能的影响规律,进而建立润滑膜局部失效和表面温度的关系;其次,引入流体动压效应和热效应的竞争机制,建立润滑热失稳的动力学方程。研究接触表面-润滑剂所组成的摩擦系统热失稳的发展和抑制的主要因素,确定润滑系统由局部润滑失效发展为整体失效或转向稳定润滑的条件;最后通过模拟实验验证理论模型和分析结果。(3)在轴承多重润滑膜生成机理方面首先,基于先进的气相薄膜沉积技术与表面加工技术,研究极端尺寸轴承表面高硬度低摩擦一体化表层
11、的制备方法,分析复杂型面加工精度、表面粗糙度和宏微观多尺寸的影响规律,构筑轴承构件表面微纳复合结构固体润滑薄膜;其次,设计制备极端条件适应性和表面损伤自修复性的先进润滑剂,发展具有优异抗磨性能及一定摩擦环境自适应的多尺度织构化复合薄膜体系的构筑方法,研究薄膜体系微结构与性能关系的尺度效应,揭示特定环境下膜层自适应与低环境敏感性行为特征;然后,从分子层次和材料功能组合及复合化层次开展轴承固液复合润滑的设计与制备,构筑固液复合润滑体系,发展可适应极端服役条件的轴承复合润滑材料;进而,提升分子结构稳定性及理化性能,充份利用物质流变行为与稳定性的调控及摩擦表面效应的控制,研究微观结构对润滑材料性能的影
12、响和高速重载精密轴承系统固液耦合多重润滑体系的设计及服役行为;最后,在模拟服役环境及随机突变工况下开展摩擦学试验,研究轴承表面层及润滑介质分子结构及微纳结构的摩擦物理化学老化及破坏规律,研究轴承表面与润滑剂在摩擦过程中的物质交换、分子生成及微结构演化规律,复杂运动条件下轴承表面界面材料分子及微纳结构演化规律,探索多因素耦合作用下轴承界面物质结构演化过程以及轴承润滑失效的材料学机制。(4)在轴承材料热处理工艺与组织性能调控方面首先,根据轴承组件的组织设计和淬透性要求,在QPT热处理新工艺研究成果基础上,借助JMatPro和ThermoCalc等软件微调现有高碳和渗碳轴承钢的成分,熔炼材料,控制O
13、和Ti的总含量在10ppm以下。其次,分别对材料进行传统热处理、QPT热处理和渗碳、渗氮化学热处理等工艺,系统表征钢的成分分布、残余应力分布和表面硬度和耐磨性能等,光学/扫描/透射电镜分析多尺度的微观组织,XRD分析相组成和残余应力,EBSD分析织构或各向异性问题等。分析性能与成分、热处理工艺的相关性规律,着重于控制马氏体内部沉淀的碳化物相的数量、尺寸和界面状态,以及残余奥氏体的数量、形貌、成分和稳定性等,从纳米层次调控轴承钢的组织和性能。第三,用热机械模拟实验等测量热处理工艺数值模拟的边界条件,应用现有软件建立新型QPT热处理和精准渗碳、渗氮过程的数值模拟模型,计算机数值模拟轴承钢材料热处理
14、过程中的成分分布、残余应力分布及其组织演变规律,实现轴承热处理的计算机模拟和工艺优化。最后,通过表面激光熔覆、感应加热表面淬火等技术,形成表面高强韧的马氏体组织和具有良好韧性的基体组织相结合的复相组织;采用智能脉冲控制的真空渗碳和渗氮新技术,提高材料表面的硬度和耐磨性,又能有效控制渗碳和渗氮过程中可能的氧化问题,提高轴承组件的接触疲劳寿命。(5)在轴承滚道基体组织与表面状态可控性制造方面本课题针对轴承滚道在轧制成形和磨削制造过程中基体组织与表面状态变化规律开展研究,通过揭示轴承滚道宏观几何精度和微观组织性能遗传、演化机制,提出轴承滚道基体组织与表面状态控制理论,为高速重载精密轴承滚道控形控性制
15、造提供科学依据和技术方法。具体技术路线为:首先,通过材料学理论、力学理论分析和轴承疲劳实验测试,建立轴承滚道基体材料组织状态模型和分类方法,揭示轴承滚道基体材料组织状态、服役载荷与疲劳寿命的相互作用规律,建立高性能轴承材料组织状态优化设计理论与方法。通过轧制塑性变形热力耦合建模和数值模拟,揭示滚道轧制过程中基体晶粒、晶界、碳化物与流线变化规律和表面状态变化规律,阐明基体材料组织和表面状态遗传演化机理。通过轴承滚道轧制成形数值模拟和实验测试,揭示轧制过程条件、宏观精度、微观组织相互作用规律,提出轴承滚道几何精度和组织性能控制成形工艺规划与优化方法。然后,通过轴承滚道磨削过程数值模拟和实验测试,揭
16、示磨粒与工件微观作用机理、变质层和残余应力的形成机理、表面强化层的形成机理,阐明磨削过程工艺条件、滚道表面状态和表面强化层相互作用和变化规律,建立轴承滚道强化、表面状态控制磨削理论和技术方法。在磨削基础理论、弹塑性力学、传热学、热力学、摩擦学、材料学等多学科综合交叉的基础上,注重理论分析、试验研究与数值模拟相结合的研究路线,开展轴承滚道磨削的理论和应用基础研究。基于力学、传热学基本方程结合适当的数学方法,建立磨削工艺参数和冷却条件与滚道表面物理机械特性的数学关系模型;开发及利用专业软件,实现磨削过程中轴承滚道表面物理特征的数值模拟;通过构建磨削实验平台和测试平台,利用相关的测试技术对数值结果进
17、行验证并修正理论模型,建立轴承滚道表面完整性的可控磨削和强化理论体系。(6)在轴承服役性能控制方面首先利用有限元方法和接触力学的相关理论,研究在装配力作用下滚动轴承各组件宏微观几何特征在多结合面间的传递及累积规律,建立对轴承装配体精度的基本分析方法;基于此方法,研究载荷引起的变形在多结合面间的传递及累积规律,在轴承动力学计算模型中计入轴承组件变形、润滑性质的变化,以分析零部件几何特征(如波纹度、粗糙度、位置偏差等)对旋转精度的影响规律;进而参考轴承磨损方面的相关研究结果,将轴承表面微观形貌随时间的变化规律计入旋转精度的计算模型,研究服役条件下轴承旋转精度随时间的演变规律。在对旋转精度研究的基础
18、上,利用实验与分析相结合的方式,研究轴承内部生热及热量的累积与传递规律,在此基础上,进一步研究轴承零部件选择与组装的配套原理(过盈量或间隙量、公差等)、安装工艺参数(与轴或轴承套的过盈量、游隙、安装顺序等)、服役条件等对轴承发热、振动、噪声的影响,揭示轴承热-力-服役性能之间的耦合及服役性能的创成机理。在上述理论研究的基础上,利用智能学习方法,建立轴承几何特征、装配参数、服役条件及预紧力等与服役性能之间的非线性映射模型。利用此模型进行反演计算方法研究,获得对轴承组件的精度设计;同时利用现代优化算法及精心设计的预紧力调整机构,实现对预紧力的实时在线调控,以保证轴承的服役性能满足服役环境的要求。最
19、后建立集成上述研究成果的高速精密轴承和大型重载滚动轴承技术原型,在实验室及实际装备上验证其性能。综上所述,本项目以理论和实验相结合为基础,以宏观与微观研究思想规划研究方案。面对高速重载精密高性能滚动轴承核心技术的难点和挑战,发展新的理论。研究多场耦合作用下润滑动态接触问题的机理,阐明制造过程轴承组件几何精度和基体组织遗传演化规律,揭示服役工况下轴承服役性能创成机理,期望在关键基础理论和关键技术研究方面实现重大的突破,在核心技术上获得足够的提升,为我国高端轴承自主设计与制造提供理论支持和技术保障,从而突破我国重大装备关键轴承系统依赖于进口的瓶颈问题。(7)高性能滚动轴承技术原型开发针对高档数控机
20、床、高速铁路所需的高性能滚动轴承,联合秦川机床厂、沈机集团昆明机床股份有限公司、大连机床厂、长春客车厂、青岛四方机车车辆股份有限公司等高性能滚动轴承最终使用用户,基于已有的检测设备和项目拟开发的检测、数据采集系统,对高性能滚动轴承服役工况进行检测、分析,并建立模型;基于本项目理论、试验的研究成果,进行面向轴承服役性能的滚动轴承宏微观几何量和润滑介质设计;充分利用瓦房店轴承集团有限责任公司现有高档轴承制造装备,并且针对本项目提出的加工工艺,与瓦轴集团装备研究所、洛阳轴承研究所等轴承装备生产商合作进行设备试制或改造,实现轴承组件的控形控性制造;根据本项目提出的装调工艺进行轴承的装配与调试,形成轴承
21、技术原型;最终,在瓦轴研制的综合性能测试平台上完成符合高档数控机床、高速铁路实际工况的性能加速测试。3) 可行性分析与组织方式参加学校西安交通大学、上海交通大学、中国科学院兰州化学物理研究所、北京理工大学、武汉理工大学和青岛理工大学,长期从事润滑理论、摩擦学、轴承技术、测试技术及摩擦学设计、材料热处理、轧制技术和磨削技术等机械制造的基础研究与实践工作,在轴承技术、摩擦润滑基础理论及其关键技术研究方面积累了丰富的成果;此外,西安交通大学与瓦轴集团计划合作建立研究院,对本项目进行提供了有力的工业设计及实践方面的支持。合作单位瓦房店轴承集团始建于1938年,新中国第一套工业轴承就在这里诞生,是我国目
22、前规模最大的轴承制造企业。2009年产值已达60亿元,是从事各种高速重载轴承生产的国家企业,建设有先进轴承技术室,其定位是集成国内外轴承研究力量,形成高速重载精密轴承创新基地与技术集成平台,提升中国轴承工业水平及尖端轴承技术水平研发水平,资助部分基地实验、轴承研发试制及技术的工业化开发。研究队伍汇集了国内外在精密轴承理论与技术,润滑与摩擦学,微接触力学,轴承系统动力学,轧制、磨削制造技术,先进数值与实验测试技术等方面知名教授,中青年专家和研究团队,他们在轴承与润滑、摩擦学设计、大型旋转机械、超精密球面轴承及先进制造等领域取得了多项重大的理论与技术成果,为本项目的科学问题和关键技术的研究打下了良
23、好的基础。(1)在轴承界面系统接触和摩擦研究方面西安交通大学机械工程领域几位院士的团队多年来从事与本项目相关的关键领域-轴承、摩擦学、精密加工与状态检测等研究工作。谢友柏院士及朱均教授等领导发展的西安交通大学润滑理论及轴承研究所在轴承领域作了长期、大量和深入的研究工作,是我国高等学校中最大的轴承研发基地和机械学科博士、硕士培养基地。近年来,承担国家自然科学基金项目、国家自然科学基金重大项目、国家重大攻关项目、攀登计划、973项目、863项目以及省部委及工业项目等20余项与轴承设计理论、动力学、摩擦学等相关的研究课题。自主研发了我国第一台可直接测量轴承机械变形与热变形的全尺寸及大型轴承试验台,积
24、累了诸多理论、试验与测试等经验。这为本项目研究工作的开展提供了坚实的工作基础。近年来,在超精密轴承领域的研究方面,西安交通大学的项目申请团队在已有多年积累的宝贵经验基础上,基于多学科交叉方式在机械工程相关领域的研究方面,创造性地提出用于复杂界面问题一套关键基础理论体系,并随后被用于机械与生物工程系统与界面力学研究当中,特别是建立完善了现代球基等工业与生物界面问题现代理论体系。主要成果均发表在国际知名刊物上。近年来还开发了几部大型复杂界面耦合系统中摩擦、磨损与润滑问题的分析软件。这为本项目涉及的科学问题、具体研究课题以及关键技术的研究提供了重要的学术平台。图2(左) 为西安交通大学自行研制的滚动
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 项目 名称 性能 滚动轴承 基础 研究 首席 科学家 西安
链接地址:https://www.31ppt.com/p-1719388.html