工业机器人应用基础ppt课件.ppt
《工业机器人应用基础ppt课件.ppt》由会员分享,可在线阅读,更多相关《工业机器人应用基础ppt课件.ppt(170页珍藏版)》请在三一办公上搜索。
1、工业机器人应用基础,第1章 绪论,1.1 工业机器人的定义,1、日本工业机器人协会(JIRA):工业机器人是“一种装备有记忆装置和末端执行装置的、能够完成各种移动来代替人类劳动的通用机器”。它又分以下两种情况来定义:工业机器人是“一种能够执行与人的上肢类似动作的多功能机器”。智能机器人是“一种具有感觉和识别能力,并能够控制自身行为的机器”。2、美国机器人协会(RIA):机器人是“一种用于移动各种材料、零件、工具或专用装置的,通过程序动作来执行各种任务,并具有编程能力的多功能操作机”。3、国际标准化组织(ISO):机器人是“一种自动的、位置可控的、具有编程能力的多功能操作机,这种操作机具有几个轴
2、,能够借助可编程操作来处理各种材料、零件、工具和专用装置,以执行各种任务”。,为了达到其功能要求,工业机器人的功能组成中应该有以下部分:1、为了完成作业要求,工业机器人应该具有操作末端执行器的能力,并能正确控制其空间位置、工作姿态及运动程序和轨迹。2、能理解和接受操作指令,并把这种信息化了的指令记忆、存储,并通过其操作臂各关节的相应运动复现出来。3、能和末端执行器(如夹持器或其他操作工具)及其他周边设备(加工设备、工位器具等)协调工作。,1.2 工业机器人的发展,1.2.1 国外工业机器人的发展,图1-1 ABB IRB 120型机器人,图1-2 Yaskawa MH3F型机器人,图1-3 K
3、UKA KR16型机器人,图1-4 OTC NV62-NCFN型机器人,1.2.2 国内工业机器人的发展,我国工业机器人起步于20世纪70年代初期,经过40多年发展,大致经历了4个阶段:70年代萌芽期,80年代的开发期、90年代的应用期和21世纪的发展期。,1.3 工业机器人的应用,1、汽车制造是一个技术和资金高度密集的产业,也是工业机器人应用最广泛的行业,几乎占到整个工业机器人的一半以上。2、工业机器人除了在汽车行业的广泛应用,在电子,食品加工,非金属加工,日用消费品和木材家具加工等行业对工业机器人的需求也快速增长。3、在未来几年,传感技术,激光技术,工程网络技术将会被广泛应用在工业机器人工
4、作领域,这些技术会使工业机器人的应用更为高效,高质,运行成本低。,1.4 安全操作规程,1、示教和手动机器人1)请不要戴手套操作示教盘和操作盘。2)在点动操作机器人时要采用较低的倍率速度以增加对机器人的控制机会。在编程、测试及维修时必须注意,即使在低速时,机器人动量也很大,必须将机器人置于手动模式。3)在按下示教盘上的点动键之前要考虑到机器人的运动趋势。4)手动模式下,不用移动机器人及运行程序时,须及时释放使能器。5)要预先考虑好避让机器人的运动轨迹,并确认该线路不受干涉。机器人处于自动模式时,不允许进入其运动所及的区域。6)机器人周围区域必须清洁,无油、水及杂质等。,2、生产运行1)在开机运
5、行前,须知道机器人根据所编程序将要执行的全部任务。2)须知道所有会影响机器人移动的开关、传感器和控制信号的位置与状态。3)必须知道机器人控制器和外围控制设备上的紧急停止按钮的位置,准备在紧急情况下按这些按钮。急停开关不允许被短接。4)不要误认为机器人没有移动其程序就已经完成,因为这时机器人很有可能是在等待让它继续移动的输入信号。5)在得到停电通知时,要预先关断机器人的主电源及气源。6)突然停电后,要赶在来电之前预先关闭机器人的主电源开关,并及时取下夹具上的工件。,3、不可使用机器人场合1)燃烧的环境2)有爆炸可能的环境3)无线电干扰的环境4)水中或其他液体中5)运送人或动物6)不可攀附7)其他
6、,第2章 工业机器人结构原理,工业机器人一般由机械本体(机械手)、驱动系统和控制系统三个基本部分组成(如图2-1所示),是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化的自动化生产设备。,图2-1 工业机器人基本组成,2.1 机械手,2.1.1 机械手的自由度自由度或者称坐标轴数,是指描述物体运动所需要的独立坐标数。1、刚体的自由度,图2-2 刚体运动的六个自由度,2、机器人的自由度机器人机械手的手臂一般具有三个自由度,其他的自由度数为末端执行装置所具有。如图2-3所示,机械手是由六个转轴组成的空间六杆开链机构,有三个基轴(轴1、轴2、轴3)和三个臂轴(轴4、轴5、轴
7、6)六个自由度,即分别为沿X轴、Y轴、Z轴的平移和绕X轴、Y轴、Z轴的转动。理论上可达到运动范围内空间任何一点。,图2-3 机器人的自由度,2.1.2 机械手的坐标系,图2-4 机器人坐标系,关节坐标系:机器人由多个运动关节组成,在关节坐标系下的运动,机械手的每一个轴都可以进行独立的操作,各个关节可以独立运动,图2-5 关节坐标系下各个轴的运动,图2-6工业机器人绝对坐标系,绝对坐标系:绝对坐标系的原点定义为机器人的安装面和第一转动轴的交点。X轴向前,Z轴向上,Y轴按右手规则定义。在绝对坐标系下,机器人末端轨迹沿定义的X、Y、Z方向运动。,圆柱坐圆标系:圆柱坐标系的原点与绝对坐标系的相同,Z轴
8、向上,轴方向为本体轴1转动方向,r轴平行于本体轴2。,图2-7工业机器人圆柱坐标系,工具坐标系:工具坐标系定义在工具尖,并且假定工具的有效方向为Z轴,X轴垂直于工具平面,Y轴由右手规则产生,在工具坐标系中,机器人末端轨迹沿工具坐标的X、Y、Z轴方向运动。,图2-8工具坐标系及各轴的运动,用户坐标系:用户坐标系是用户根据工作方便的需要,自行定义的坐标系,用户可根据需要定义多个坐标系。,图2-9工业机器人用户坐标系,TCP(工具控制点)固定功能:除了关节坐标系外,在其它坐标系下都有TCP固定功能,即在工具控制点位置保持不变的情况下,只改变工具的方向(姿态)。在TCP固定功能下各轴的运动如下:表2-
9、6 TCP固定功能下各轴的运动方式,注:在不同坐标系下腕运动轴的转动方向是不同的。,表2-6 TCP固定功能下各轴的运动方式,2.1.3 机械手的组成工业机器人机械本体即机械手包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。,手部指与物件接触的部件。由于与物件接触的形式不同,可分为夹持式和吸附式手部。夹持式手部由手指(或手爪)和传力机构所构成。手指是与物件直接接触的构件。常用的手指运动形式有回转型和平移型。手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。常用的指形有平面式、V形面式和曲面式;手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。传力机
10、构通过手指产生夹紧力来完成夹放物件的任务。传力机构型式较常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母式、弹簧式和重力式等。,1、手部,2、手腕 手腕是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势),扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。手腕有独立的自由度。有回转运动、上下摆动、左右摆动。一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。目前,应用最为广泛的手腕回转运动机构为回转液压(气)缸,它的结构紧凑,灵巧但回转角度小,并且要求严格密封,否则
11、就难保证稳定的输出扭距。因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。,3、手臂 手臂是支撑被抓物件、手部和手腕的重要握持部件,带动手指抓取物件并按预定要求将其搬运到指定的位置 臂部运动的目的:把手部送到空间运动范围内任意一点。手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现。,4、立柱立柱是支撑手臂的部件。立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。机械手的立柱通常固定不动,但因工作需要有时也可作横向移动,即称为可移式立柱。 5、行走机构当工业机械手需要完成较远距离的操作或扩大使用范围时,可在机座上安装滚轮、轨道等行走
12、机构,实现工业机械手的整机运动。滚轮式行走机构可分为有轨和无轨两种。驱动滚轮运动则应另外增设机械传动装置。 6、机座机座是机械手的基础部分。机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。,2.1.4 机械手的分类,1、按臂部的运动形式分类 直角坐标型:臂部可沿三个直角坐标移动,其运动部分由三个相互垂直的直线移动(即PPP)组成,其工作空间几何形状为长方形。 圆柱坐标型:臂部可作升降、回转和伸缩动作,其运动形式通过一个转动和两个移动组成的运动系统实现,其工作空间几何形状为圆柱。 球坐标型:臂部能回转、俯仰和伸缩,又称极坐标型工业机器人 多关节型:臂部有多个转动关节,又称回
13、转坐标型工业机器人 平面关节型:它采用一个移动关节和两个回转关节(即PRR),移动关节实现上下运动,而两个回转关节则控制前后、左右运动。这种形式的工业机器人又称(SCARA,Selective Compliance Assembly Robot Arm)装配机器人。,2、按执行机构运动的控制机能分类点位型:控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和普通搬运、装卸等作业,它的运动为空间点到点之间的移动,只能控制运动过程中几个点的位置,不能控制其运动轨迹。若欲控制的点数多,则必然增加电气控制系统的复杂性。目前使用的专用和通用工业机械手均属于此类。连续轨迹型:控制执行机构按给定轨
14、迹运动,适用于连续焊接和涂装等作业。它的运动轨迹为空间的任意连续曲线,其特点是设定点为无限的,整个移动过程处于控制之下,可以实现平稳和准确的运动,并且使用范围广,但电气控制系统复杂。,3、按程序输入方式分类 编程输入型:以穿孔卡、穿孔带或磁带等信息载体,输入已编好的程序。 示教输入型:示教方法有两种:一种是由操作者用手动控制器(示教编程器),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接引导执行机构,按要求的动作顺序和运动轨迹操演一遍。 智能型:具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作,如果具有识别功能或更进一步增加自适应、自
15、学习功能,即成为智能型工业机器人。它能按照人给的“宏指令”自选或自编程序去适应环境,并自动完成更为复杂的工作。,4、按用途分类 专用机械手:附属于主机的、具有固定程序而无独立控制系统的机械装置。专用机械手具有动作少、工作对象单一、结构简单、使用可靠和造价低等特点,适用于自动机床,自动线的上、下料机械手和机加工中心等批量自动化生产的自动换刀机械手。 通用机械手:一种具有独立控制系统、程序可变、动作灵活多样的机械手。通用机械手的工作范围大、定位精度高、通用性强,适用于不断变换生产品种的中小批量自动化生产。通用机械手按其控制定位的方式不同可分为简易型和伺服型两种:简易型以“开关”式控制定位,只能是点
16、位控制;伺服型具有伺服系统定位控制系统,可以点位控制,也可以实现连续轨迹控制。一般伺服型通用机械手属于数控类型。,5、按驱动方式分类 气压传动机械手:以压缩空气的压力来驱动执行机构运动的机械手。其主要特点是:空气来源极为方便,输出力小,气动动作迅速,结构简单,成本低,无污染。但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低。 液压传动机械手:以液压的压力来驱动执行机构运动的机械手。其主要特点是: 具有较大的抓举能力,可达上千牛顿,传动平稳、结构紧凑、动作灵敏。但对密封装置要求严格,不然油的泄漏对机械手的工作性能有很大的影响,且不宜在高温、低温下工作。 机械传动机械
17、手:由机械传动机构(如凸轮、连杆、齿轮和齿条、间歇机构等)驱动的机械手。它是一种附属于工作主机的专用机械手,其动力由工作机械传递。它的主要特点是运动准确可靠,动作频率大,但结构较大,动作程序不可变。它常被用于工作主机的上、下料。 电力传动机械手:由特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行机构运动的机械手。因为不需要中间的转换机构,故机械结构简单。其中直线电机机械手的运动速度快和行程长,维护和使用方便。,2.1.5 机械手的主要技术参数,工业机器人的种类、用途以及用户要求都不尽相同,但工业机器人的主要技术参数应包括以下几种:自由度、精度、工作范围、最大工作速度和承载能力。,1、自
18、由度自由度(degree of freedom)是指机器人所具有的独立坐标轴运动的数目,不包括末端执行器的开合自由度。,图2-3 机器人的自由度,2、定位精度和重复定位精度定位精度和重复定位精度是机器人的两个精度指标。定位精度是指机器人末端执行器的实际位置与目标位置之间的偏差,由机械误差、控制算法与系统分辨率等部分组成。重复定位精度是指在同一环境、同一条件、同一目标动作、同一命令之下,机器人连续重复运动若干次时,其位置的分散情况,是关于精度的统计数据。,图2-10工业机器人重复定位精度的典型情况,3、作业范围 作业范围是机器人运动时手臂末端或手腕中心所能到达的所有点的集合,也称为工作区域。由于
19、末端执行器的形状和尺寸是多种多样的,为真实反映机器人的特征参数,故作业范围是指不安装末端执行器时的工作区域。,图2-11工业机器人作业范围示意图,4、最大工作速度 生产机器人的厂家不同,其所指的最大工作速度也不同,有的厂家指工业机器人主要自由度上最大的稳定速度,有的厂家指手臂末端最大的合成速度,对此通常都会在技术参数中加以说明。 5、承载能力 承载能力是指机器人在作业范围内的任何位姿上所能承受的最大质量。承载能力不仅取决于负载的质量,而且与机器人运行的速度和加速度的大小和方向有关。为保证安全,将承载能力这一技术指标确定为高速运行时的承载能力。,2.2 驱动系统 机器人的驱动系统是直接驱使各运动
20、部件动作的机构,对工业机器人的性能和功能影响很大。工业机器人的动作自由度多,运动速度较快,驱动元件本身大多安装在活动机架(手臂和转台)上。这些特点要求工业机器人驱动系统的设计必须做到外形小、重量轻、工作平稳可靠。另外,由于工业机器人能任意多点定位,工作程序又能灵活改变,所以在一些比较复杂的机器人中,通常采用伺服系统。 机器人关节驱动方式有液压式、气动式和电机式。,1、液压系统的组成1) 油泵:供给液压驱动系统压力油,将电动机输出的机械能转换为油液的压力能,用压力油驱动整个液压系统的工作。2) 液动机:是压力油驱动运动部件对外工作的部分。手臂作直线运动,液动机就是手臂伸缩油缸。作回转运动的液动机
21、,一般叫作油马达,回转角度小于360的液动机,一般叫回转油缸(或摆动油缸)。3) 控制调节装置:各种阀类,如单向阀、换向阀、节流阀、调速阀、减压阀、顺序阀等,分别起一定的作用,使机器人的手臂、手腕、手指等能够完成所要求的运动。4) 辅助装置:如油箱、滤油器、储能器、管路和管接头以及压力表等。,2、液压驱动系统的特点 1、能得到较大的输出力或力矩 2、滞后现象小,反应较灵敏,传动平稳 3、输出力和运动速度控制较容易 4、可达到较高的定位精度 5、系统的泄漏难以避免 6、油液的粘度对温度的变化很敏感,二、气动驱动 气动驱动机器人是指以压缩空气为动力源驱动的机器人。1、气动驱动系统的组成1) 气源系
22、统 压缩空气是保证气压系统正常工作的动力源。 气源净化辅助设备包括后冷却器、油水分离器、贮气罐、干燥器、过滤器等。 后冷却器:安装在空气压缩机出口处的管道上,它的作用是使压缩空气降温。 油水分离器:将水、油分离出去。 贮气罐:存贮较大量的压缩空气,以供给气动装置连续稳定的压缩空气,并可减少由于气流脉动所造成的管道振动。 过滤器:空气的过滤是为了得到纯净而干燥的压缩空气能源。,1) 气动执行机构 气动执行机构包括气缸、气动马达。 气缸:利用压缩空气的压力能转换为机械能的一种能量转换装置。 气动马达(气马达):将压缩空气的压力能转变为机械能的能量转换装置。它输出力矩,驱动机构做回转运动。2) 空气
23、控制阀和气动逻辑元件 空气控制阀是气动控制元件,它的作用是控制和调节气路系统中压缩空气的压力、流量和方向,从而保证气动执行机构按规定的程序正常地进行工作。 空气控制阀有压力控制阀、流量控制阀和方向控制阀三类。 气动逻辑元件通过可动部件的动作,进行元件切换而实现逻辑功能。,2、气动驱动系统的特点气动驱动系统存在以下优点:1) 空气取之不竭,用过之后排入大气,不需回收和处理,不污染环境,偶然地或少量地泄露不至于对生产造成严重的影响。2) 空气的粘性很小,管路中压力损失也就很小(一般气路阻力损失不到油路阻力损失的千分之一),便于远距离输送。3) 压缩空气的工作压力较低,因此对气动元件的材质和制造精度
24、要求可以降低。一般说来,往复运动推力在l2吨以下用气动经济性较好。4) 与液压传动相比,它的动作和反应较快,这是气动的突出优点之一。5) 空气介质清洁,亦不会变质,管路不易堵塞。6) 可安全地应用在易燃,易爆和粉尘大的场合,便于实现过载自动保护。,气动驱动系统存在以下缺点:1) 气控信号比电子和光学控制信号慢的多,它不能用在信号传递速度要求很高的场合。2) 由于空气的可压缩性,致使气动工作的稳定性差,因而造成执行机构运动速度和定位精度不易控制。3) 由于使用气压较低、输出力不可能太大,为了增加输出力,必然是整个气动系统的结构尺寸加大。4) 气动的效率较低,这是由于空气压缩机的效率为55%,压缩
25、空气用过之后排空又损失了一部分能量之故。,三、电动驱动系统 电动驱动(电气驱动)是利用各种电动机产生的力或力矩,直接经过减速机构去驱动机器人的关节,以获得所要求的位置、速度和加速度。 电动机驱动可分为普通交、直流电机驱动,交、直流伺服电动机驱动和步进电动机驱动。 普通交、直流电机驱动需加装减速装置,输出力矩大,但控制性能差,惯性大,适用于中型或重型机器人。 伺服电动机和步进电动机输出力矩相对小,控制性能好,可实现速度和位置的精确控制,适用于中小型机器人。 交、直流伺服电动机一般用于闭环控制系统,而步进电动机主要用于开环控制系统,一般用于速度和位置精度要求不高的场合。,三、电动驱动系统 电动驱动
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工业 机器人 应用 基础 ppt 课件
链接地址:https://www.31ppt.com/p-1710524.html