FPGA研发牛人心得总结(DOC55页).docx
《FPGA研发牛人心得总结(DOC55页).docx》由会员分享,可在线阅读,更多相关《FPGA研发牛人心得总结(DOC55页).docx(57页珍藏版)》请在三一办公上搜索。
1、FPGA研发之道FPGA是个什么玩意?FPGA是个什么玩意?首先来说:FPGA是一种器件。其英文名 feild programable gate arry 。很长,但不通俗。通俗来说,是一种功能强大似乎无所不能的器件。通常用于通信、网络、图像处理、工业控制等不同领域的器件。就像ARM、DSP等嵌入式器件一样,成为无数码农码工们情感倾泻而出的代码真正获得生命的地方。只不过,一样的编程,却是不一样的思想。嵌入式软件人员看到的是C。而FPGA工程师看到是硬件描述语言,verilog或VHDL。软件看到是函数、对象、重构。FPGA工程师则是模块、流水、复用。从现象上看,都是代码到下载程序再到硬件上运行
2、。不能只看现象而忽略本质。FPGA 开发本质上是设计一颗IC,“*的身子,丫鬟的命”不是所有verilog/VHDL代码,都能获得青睐去流片成为真正的芯片,而更多的则成为运行在FPGA器件上,成为完成相同功能的替代品。其实现的功能却一点也不逊色于百万身价流片的近亲。从而成为独树一帜的行业。FPGA开发的流程,是通过verilog/VHDL等硬件描述语言通过EDA工具编译、综合、布局布线成为下载文件,最终加载到FPGA器件中去,完成所实现的功能。那硬件描述语言描述的是什么?这里描述的就是组合逻辑电路和时序逻辑电路。组合逻辑电路就是大家所熟知的 与门、或门、非门。时序逻辑电路则是触发器。数字芯片上
3、绝大部分逻辑都是这两种逻辑实现的。也就是基本上每个电子行业的人所学过的数字电路。顺便说一下,感谢香农大师,在其硕士毕业论文就奠定了数字电路的的根基。只不过在FPGA中,与或非的操作变成了查找表的操作。于是所有的数字电路变成了查找表和寄存器,这就构成了FPGA的基础。查找表负责逻辑实现,寄存器存储电路状态。二者配合,双剑合璧,天衣无缝。这是最初的FPGA的雏形。 现代FPGA内部出了查找表和寄存器之外,还有RAM块,用于存储大量的数据块,这是因为RAM块较寄存器来存储大量数据更能节省芯片实现的面积。FPGA内部的时序电路则需要时钟的输入,通常FPGA内部需要时钟种类较多,因此需要在片内产生所需的
4、的相关的时钟,如不同频率,不同相位的时钟,因此时钟管理单元DCM/PLL也是必不可少的内部部件。除此之外,FPGA内部还包括接口I/O,I/O分为普通I/O和高速I/O,高速I/O支持例如高速的SERDES,用于实现XAUI,PCIE等高速接口,这些接口动辄几Gbps到10Gbps以上。此外种类多种多样的硬核IP也是各FPGA厂商差异化竞争利器,例如POWERPC、ARM等硬核IP。从而构成CPU+FPGA于一体的集可编程性和可重构的处理平台。因此,相对来所,FPGA虽然发展有二三十年的历史,其基本架构一直不变不大。回到问题开始的地方,FPGA的英文翻译过来是现场可编程门阵列。这是相对ASIC
5、来说的,ASIC的硬件也可看做是门阵列,但是其是非可编程的器件。流片完成其功能就固化了,而FPGA的可编程性就在其能够重新下载配置文件,来改变其内在的功能,这就是其可编程性的由来。从前端开发流程来说,FPGA和ASIC开发并无二至。由于ASIC开发一次性投入成本较高,FPGA无疑是一种经济的替代方案,用于实现的高速的数据并行处理。如业务能够支撑大规模应用并且协议固化,则能够分摊成本的ASIC实现就有成本的优势。 FPGA作为一种器件,技术上主要垄断在少数大公司手中,那就是双巨头ALTERA和XILINX。除此之外还有一些份额相对较小的公司,例如ACTEL和LATTICE。不止是FPGA的硬件芯
6、片,其配套的EDA工具技术壁垒更高。因此相对于CPU来说,FPGA的国产化更不乐观,不过已经有国内的厂商来从事这一行业,例如国微和京微雅格等,也在一些细分市场上推出自己的FPGA产品。FPGA和他那些小伙伴们 (一) 系统架构组成通常来讲,“一个好汉三个帮”,一个完整的嵌入式系统中由单独一个FPGA使用的情况较少。通常由多个器件组合完成,例如由一个FPGA+CPU来构成。通常为一个FPGA+ARM,ARM负责软件配置管理,界面输入外设操作等操作,FPGA负责大数据量运算,可以看做CPU的专用协处理器来使用,也常会用于扩展外部接口。常用的有ARM+FPGA,DSP+FPGA,或者网络处理器+FP
7、GA等种种架构形式,这些架构形式构成整个高速嵌入式设备的处理形态。 不得不说的是,随着技术的进步,现在CPU中集成的单元也随之增加,例如TI的“达芬奇”架构的处理器内部通常由ARM+DSP构成。同时异构的处理器形态业逐渐流行,如ARM9+ARM7的结构。这类一个主要处理系统(ARM9)外带辅助处理系统(ARM7)的设计,同样成为现在处理器设计的流行方向。主处理系统运行嵌入式操作系统,而辅助处理单元则专注某一些的专用领域的处理。这些系统的应用减少了FPGA作为CPU协处理单元的领域。因为毕竟FPGA相比ARM等流行嵌入式处理器价格要相对较高。 在这种情形下,FPGA的厂商似乎也感受到了压力,不约
8、而同推出了带ARM硬核的FPGA,例如ALTERA的 和XILINX的ZYNQ和ALTERA的SOC FPGA。这是即是互相竞争的需要,也是同众多CPU厂商一掰手腕的杰总。即使在这两种在趋势下,经典的处理器+FPGA的设计仍然可看做为高性能嵌入式系统的典型配置。 经典的处理器+FPGA的配置中有多种的架构形式,即多个处理器单元,可能是ARM,MIPS,或者DSP,FPGA也可能是多片的配置,具体架构形式于具体处理的业务相关和目标设备的定位也相关。因为FPGA作为简单业务流大数据量的处理形态仍然是CPU无可比拟的优势,FPGA内部可以开发大量业务数据并行,从而实现高速的数据处理。 在实现高速处理
9、方面,CPU的另一个发展趋势是多核,多核处理器也能处理大数据量的业务的并行,例如业界TERILA已推出64核的多核处理器,采用MIPS处理器,通过二维MASH网络连接在一起,形成NOC的结构。在性能上已经和现有的高速FPGA的处理能力上不相上下。但是多核处理器的不得不说的问题就是,同一业务流分配到多核处理上后,如需交互,例如访问同一资源,就会造成读写的缓存一致的问题,解决的这一问题的天然思路是加锁,即在变量访问上加自旋锁,但是带来的问题就是处理性能的急剧下降。而FPGA无论并行处理和同一变量的访问,都可以变成工程师的设计水平的问题,没有原理性的挑战。 没有一种器件可以满足全人类的众多需求,因此
10、不用担心FPGA没有用武之地。必定是一系列产品的组合。下面主要介绍一下FPGA可以作为现今热门场景的几种应用。(1)网络存储产品,特别是现在的NAS,或者SAN设备上,其存储的时间、接口、安全性等都要求较高,而FPGA无论处理性能还是扩展接口的能力都使其在这一领域大有作为。现在高端FPGA单片就可以扩展32个或者更多4G或者8G的FC接口。并且其协议处理相对的固定,也使FPGA在这一领域有大量的可能应用。(2)高速网络设备,现在高速网络设备10G、40/100G以太网设备领域,同样FPGA也是关键的处理部件。特别是IPv6的商用化及大数据对于基础设施的高要求,都使这一领域的处理应用会逐渐广泛,
11、这一领域通常是高速网络处理器(NP)+FPGA的典型架构。(3)4G等通信设备,对于新一代通信基站的信号处理,FPGA+DSP阵列的架构就是绝配。特别是在专用处理芯片面世之前,这样的架构可以保证新一代通信基础设施的迅速研发和部署。 没有完美的架构,只有合适的组合,各种芯片和架构都是为应用服务,互相的渗透是趋势,也是必然。FPGA相对处理器的可编程领域,仍然属于小众(虽然人数也不少)。但是正像一则笑话所说:大腿虽然比根命根子粗,但决没有命子重要。这算开个玩笑。FPGA的实现为以后的芯片化留下了许多可能和想象空间,从而在应用大量爆发时通过芯片化来大幅降低成本,这这也正是其他可编程器件所不能比拟的。
12、FPGA和他那些小伙伴们 (二) 器件互联系统架构确定,下一步就是FPGA与各组成器件之间互联的问题了。通常来说,CPU和FPGA的互联接口,主要取决两个要素: (1)CPU所支持的接口。 (2)交互的业务。 通常来说,FPGA一般支持与CPU连接的数字接口,其常用的有EMIF,PCI,PCI-E,UPP,网口(MII/GMII/RGMII),DDR等接口。作为总线类接口,FPGA通常作为从设备与CPU连接,CPU作为主设备通过访问直接映射的地址对FPGA进行访问。根据是否有时钟同步,通常总线访问分为同步或异步的总线,根据CPU外部总线协议有所不同,但数据、地址、控制信号基本是总线访问类型中总
13、线信号所不能省略的。CPU手册中会对信号定义和时序控制有着详细的说明,FPGA需要根据这些详细说明来实现相应的逻辑。同时CPU还可以对访问时序进行设置,比如最快时钟,甚至所需的最小建立时间和保持时间,这些一般CPU都可以进行设置,而这些具体参数,不仅影响FPGA的实现,也决定总线访问的速度和效率。对于同步总线,只需要根据输入时钟进行采样处理即可,但对于异步总线,则需要的对进入的控制信号进行同步化处理,通常处理方式是寄存两拍,去掉毛刺。因此用于采样的时钟就与CPU所设置的总线参数相关,如采样时钟较低,等控制信号稳定后在译码后输出,一个总线操作周期的时间就会相对较长,其处理的效率也相对较低;假如采
14、样时钟过快,则对关键路径又是一个挑战,因此合理设定采样频率,便于接口的移植并接口的效率是设计的关键点和平衡点。 对于总线型的访问来说,数据信号通常为三态信号,用于输入和输出。这种设计的目的是为了减少外部连线的数量。因为数据信号相对较多一般为8/16/32位数据总线。总线的访问的优势是直接映射到系统的地址区间,访问较为直观。但相对传输速率不高,通常在几十到100Mbps以下。这种原因的造成主要为以下因素(1)受制总线访问的间隔,总线操作周期等因素,总线访问间隔即两次访问之间总线空闲的时间,而总线操作周期为从发起到相应的时间。(2)不支持双向传输,并且FPGA需主动发起对CPU操作时,一般只有发起
15、CPU的中断处理一种方式。这种总线型操作特点,使其可以用作系统的管理操作,例如FPGA内部寄存器配置,运行过程中所需参数配置,以及数据流量较小的信息交互等操作。这些操作数据量和所需带宽适中,可以应对普通的嵌入式系统的处理需求。 对于大数据流量的数据交互,一般采用专用的总线交互,其特点是,支持双向传输,总线传输速率较快,例如GMII/RGMII、Upp、专用LVDS接口,及SERDES接口。专用SERDES接口一般支持的有PCI-E,XAUI,SGMII,SATA,Interlaken接口等接口。GMII/RGMII,专用LVDS接口一般处理在1GbpS一下的业务形式,而PCI-E,根据其型号不
16、同,支持几Gbps的传输速率。而XAUI可支持到10Gbps的传输速率,lnterlaken接口可支持到40Gbps的业务传输。 对于不同所需的业务形式及处理器的类型,则可选择相应的接口形式,来传输具体的业务。现今主流FPGA中都提供的各种接口的IP。选择FPGA与各型CPU互联接口,一般选择主流的应用交互方案,特殊的接口缺少支撑IP,导致开发、调试、维护和兼容性的成本都较大,同时注意系统的持续演进的需要,如只在本项目使用一次,而下一项目或开发阶段已摒弃此类接口,则需提前规划技术路线。毕竟一个稳定、高效的接口互联是一个项目成功的基础。 不是所有的嵌入式系统都需要“高大上”的接口形式,各类低速的
17、稳定接口也同样在FPGA的接口互联中有着重要的角色,其中UART、SPI、I2C等连接形式也非常的常见。毕竟,一个优秀的设计不是“高大上”的堆积,而是对需求最小成本的满足。适合的才是最美的。灵活性的陷阱如果说用一个词来描述FPGA的特性,灵活性肯定名列前茅。 FPGA的灵活性在于: (一)I/O的灵活性,其可以通过其I/O组成各种接口与各种器件连接,并且支持不同的电气特性。 (二)内部存储器灵活性,可以通过IP生成工具生成各种深度和宽度的RAM或者FIFO等。 (三)逻辑的灵活性,内部逻辑通可生成的各种类型IP。 对于I/O接口来说,FPGA的I/O可以支持不同类型的电平和驱动能力,各I/O未
18、定义之前其地位平等,例如一个数据信号可将其约束在任意引脚,只要其电平符合连接的规范。因此硬件工程师基于这种认识,在PCB布线时,基于布线需要,便调整其布线的顺序,例如互换两个信号的位置。通常情况上,这种调整是没有任何问题的。但是随着FPGA的接口IP核硬核化的趋势,逐渐由很多的接口IP不能支持这种调整。例如对于较早的SDRAM或者DDRSDRAM来说,在xilinx和ALTERA的FPGA上,其数据、地址信号等都是可调的。但是随着DDR2,DDR3接口的出现,其IP接口,只能支持在某个BANK并且例化结束后直接生成相应的约束文件,而这些的改动将会导致布局布线的错误。另一些例子则是一些高速SER
19、DES的组合。例如对于XAUI接口来说,其硬核IP(ALTERA)上就不支持4组SERDES的顺序互换,这将会影响其硬核FCS的编码。如果板级连接上与PHY的顺序与FPGA例化IP的约束不一致,则其硬核PCS就不能布局布线通过(软核FCS可以支持调整)。这种灵活性认识导致硬件板级互联的问题可谓屡见不鲜,特别是系统复杂度的上升,板级连线的增加,将会导致设计人员疏忽从而掉入“灵活性的陷阱”。解决此类问题的方法。包括(1)预评估,在设计之前就在FPGA上评估所需的接口的逻辑占用、约束位置、时钟需求等等,预先评估给系统设计提供相应的数据支撑和设计参考。(2)沟通,对于设计的变更,要进行有效沟通,不能使
20、铁路警察,各管一段。(3)设计评审,虽然老套,但每个环节上的评审能有效减少掉入类似陷阱的几率。 对于内部存储资源,大多数FPGA工程师就是拿来就用的状态。而缺少整体内部memory规划,一般来说,对于单端口、双端口、假双端口,各型芯片手册中都有明确的定义,例如xilinx的SPATAN3系列中最小RAM单元为18K。一个RAM例化最小单位就是18K。而新的器件中最小单位一般为9K。也就是说虽然工程师例化的较小的RAM,例如256*16.只有4K,但是其也占用一个最小单元,根据器件的不同而不同。而乱用双端口导致RAM资源的过分占用则是更常见的设计问题。FPGA内部对于单个RAM能够支持的真双端口
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- FPGA 研发 人心 总结 DOC55
链接地址:https://www.31ppt.com/p-1701267.html