某公司品质培训教材p管制图.docx
《某公司品质培训教材p管制图.docx》由会员分享,可在线阅读,更多相关《某公司品质培训教材p管制图.docx(18页珍藏版)》请在三一办公上搜索。
1、p管制图(不良率管制图)理论计算不良率管制图之统计理论基础为二项分配,假设制程处于稳定状态,制程中不符合规格的机率为必而且连续生产之各单位是独立的,因此每一生产的单位可以看成是白努利随机变量,其参数为p。假如随机抽取n个样本,D是样本中之不合格品数,则D属于二项分配,其参数为n及p亦即PD=x= x=0, 1, 2, , n随机变量D的平均数与变异数分别为np及np(1-p)。样本不良率之定义为:样本中不合格品数目D与样本大小n之比值随机变数的分配从二项分配得知,因此的平均数与变异数分别是p假设y为量测品质特性之样本统计量,y之平均数为y,标准差为y,则苏华特管制图的一般型式为:UCLyky中
2、心线yLCL=yky使用条件由于不良率管制图主要管制制程不合格率必所以也称为p管制图,此管制图虽然是用来管制产品之不合格率,但并非适用于所有之不合格率数据。在使用不良率管制图时,要满足下列条件a. 发生一件不合格品之机率为固定。 b. 前、后产品为独立。如果一件产品为不合格品之机率,是根据前面产品是否为不合格品来决定,则不适合使用p管制图。 c. 如果不合格品有群聚现象时,也不适用p管制图。此问题通常是发生在产品是以组或群之方式制造。例如在制造橡胶产品之化学制程中,如果烤箱之温度设定不正确,则当时所生产之整批产品将具有相当高之不合格率。如果一产品被发现为不合格,则同批之其它产品也将为不合格。
3、实际使用可能之情形a. 不良率p已知 假设不良率p已知,或p值由管理人员决定,则不良率管制图的参数计算如下:UCLp中心线pLCLpp管制图之实施步骤包括抽取n个样本,计算样本不良率,并将点在图上,只要在管制界限内,且不存在系统性、非随机性的变化,则可认为在水准p下,制程处于管制内(in control)。假设有任一点超出管制界限,或者存在非随机性变化的情形,则表示制程的不良率已改变且制程不在管制内(out of control)。b. 不良率p不知 若制程不良率p未知,则p值需从观测数据中估计。一般的程序是初步选取m组样本为n的样本,通常m为20或25,假设第I组样本含有Di个不合格品,则不
4、良率为:i1, 2, m全体样本之平均不良率为统计量为不良率p的估计值。p管制图中心线及管制界限之计算为:UCL中心线pLCL以上所得的管制界限称为试用管制界限(trial control limits),它可先试用于最初的m组样本,来决定制程正否在管制内。为了测试过去制程在管制内的假设,我们可先将m组样本之不良率分别绘在管制图上,然后分析这些点所显示的结果。若所有的点均在试用管制界限内且不存有系统性的模型 则表示过去制程正在管制内,试用管制界限能够延用于目前或未来的制程。假设有一点或更多点超出试用管制界限,则显示过去的制程并非在管制内此时必须修正试用管制界限。其作法是检查每一个超出管制界限的
5、点找出其非机遇原因,然后将这些点舍弃,重新按相同之方法算出管制界限并检查在图上的点正否超出新的管制界限或存有非随机性的模型。若有点超出。新的管制界限外,则须再修正管制界限,直到所有的点均在管制内。此时的管制界限才能延用于目前或未来的制程。实例 【例】某除草机制造商以p管制图管制除草机在发动时是否正常。该公司每天抽取40部做试验,第一个月之数据如下表所示,试建立试用管制界限。日期不合格品数日期不合格品数日期不合格品数日期不合格品数147113719023831422013190153213421011632225311217262124188【解】由于每天抽样之样本数均相同,因此不合格率之平均值
6、可以利用下式计算:0.0648管制界限为UCL=0.6480.1816LCL=0.6480.052由于LCL0并无意义,因此我们将LCL设为0其p管制图如下管制图发生特异值之原因特异值(freaks):某个观测值明显的与其它值不同。可能是 1. 工具设置错误后立即改进 2. 测量错误 3. 绘制错误 4. 操作错误 5. 设备故障等 管制图发生周期变化之原因周期变化(cycles): 在一个短区间,数据会以某种模式重复。可能是 1. 季节性因素影响如气温与湿度等 2. 固定设备已磨损的位置或纹路 3. 操作员疲劳 4. 电压变化 5. 工作轮调等 管制图发生平均值改变之原因平均值改变(shif
7、t in level):平均值明显不在中心线附近可能是 1. 夹具 2. 制程方法 3. 制程技术 4. 引进新原料 5. 操作员技术更熟练 6. 改变设备维修计划 7. 引进制程管制 8. 标准变化 管制图发生趋势之原因趋势(trends):管制图中的点逐渐上升或下降可能是 1. 某些零件逐渐松动或磨耗 2. 多种原料混合使用 3. 工具与夹治具逐渐磨损 4. 操作员学习中 5. 维修技术不良 6. 制造现场之环境脏乱 管制图发生混合之原因混合(mixtures):观测值都落在离中心线很远的地方,而且交错地分散可能是 1. 两种以上的原料操作员机器测量工具生产方法交错使管制图发生规则性变化之
8、原因规则性变化(systematic variable):管制图中的点一上一下有秩序的出现可能是 1. 抽样行为呈有规则性变化 2. 有规则性的从不同母体中抽样 管制图发生分层之原因分层(stratification):是一种稳定的混合型,通常是靠近中心线或管制界限可能是两种以上 1. 原料 2. 操作员 3. 机器测量工具 4. 生产方法交错使用 管制图发生不稳定之原因不稳定(instability):出现不寻常的大波动可能是 1. 大规模机器重新调整 2. 夹治具位置不正确 3. 不同批的原料混合使用 4. 与操作员机器测试仪器原料有关 5. 非随机抽样 np(不良数管制图)管制图参数计算
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 某公司 品质 培训教材 制图
链接地址:https://www.31ppt.com/p-1689165.html