群智能是近年来人工智能研究的一个热点话题蚁群算法作....docx
《群智能是近年来人工智能研究的一个热点话题蚁群算法作....docx》由会员分享,可在线阅读,更多相关《群智能是近年来人工智能研究的一个热点话题蚁群算法作....docx(31页珍藏版)》请在三一办公上搜索。
1、摘 要群智能是近年来人工智能研究的一个热点话题。蚁群算法作为群智能算法的一个热点,是意大利学者M. Dorigo通过模拟蚁群觅食行为提出的。本文首先介绍了群智能,然后详细介绍蚁群算法原理及其优缺点。接着依据大量实验对参数m、Q的选择进行研究,得出其选择规律,并在以前学者“三步走”的基础上提出了一种“四步走”的有效方法来选择蚁群算法最优组合参数,然后对蚁群改进算法进行分析,同时以实验的方式对这几种算法各自求解TSP问题的性能进行了对比分析,得出性能结果排名,并发现当TSP问题最优解相同时还可以依据其他性能(迭代次数、迭代时间等)得出最优结果,最后还对陈烨的“蚁群算法实验室”的可视化编程进行了优化
2、和改进,使之能够更方便的用于几种算法性能比较和同种算法不同参数的比较。【关键词】 群智能;蚁群算法;参数选择;TSP;可视化Experimental Analysis and Parameter Selection for the Ant Colony Optimization AlgorithmXu HuiAbstract:Swarm intelligence has been a hot spot in the field of artificial intelligence in recent years. Among the algorithms of swarm intelligen
3、ce, ant colony algorithm was presented by an Italy scholar M. Dorigo learning from the behavior simulating ant colony foraging. Firstly, this paper has introduced the group intelligence and promoted the ant colony algorithm, obtained the choice regular of “m, , , , Q” basing on the experiment, and p
4、roposed an effective method named “four steps” in the fundation of others scholars “three steps” to choose the most superior combination parameter of ant group algorithm, then analied the six kinds improved algorithm of ant colony ant colony algorithm, at the same time explained the ability of sever
5、al kinds of ant algorithm to solve the TSP question according to the experiments; obtained the most superior result according to other performance (iterative number of times, iterative time and so on) when the most superior result of TSP question optimal solution is same. Finally, this paper also ha
6、s carried on the optimization and the improvement to the visible programming of ChenYes “ant colony algorithm laboratory” to enable it more convenient to use in several algorithms performance comparison and the comparison of different parameter and homogeneous algorithm. KEY WORDS:SWARM INTELLIGENCE
7、; ANT COLONY ALGORITHM; PARAMETER SELECTION; TSP; VISUALIZATION目 录1 绪论11.1 引言11.2 群智能11.3 蚁群算法的提出21.4 本文研究工作22 蚁群算法概述42.1 蚁群算法基本原理42.2 蚁群算法的优点与不足52.3 本章小结63 蚁群算法的参数设置研究73.1 硬件/软件环境平台73.2 蚂蚁数目对基本蚁群算法的影响73.3 信息启发式因子和期望值启发式因子93.4 信息素残留系数 103.5 总信息量113.6 本章小结124 蚁群算法实验分析134.1 改进的蚁群优化算法134.1.1 最优解保留策略蚂蚁系
8、统134.1.2 蚁群系统134.1.3 最大-最小蚂蚁系统134.1.4 基于排序的蚂蚁系统144.1.5 The Best-Worst Ant System144. 2 实验仿真及算法性能比较分析154.2.1 硬件/软件环境平台154.2.2 重要参数设置154.2.3 实验结果154.3 本章小结175 可视化编程185.1 “蚁群算法实验室”的优点与不足185.2 最大最小蚁群算法的图形化演示的改进185.3本章小结226 结论与展望23参考文献24致 谢25附 录2627江西财经大学本科毕业设计1 绪论自蚁群算法提出以来,就引起了国内外学者的广泛关注,提出了很多改进算法。参数的设置
9、直接影响到算法的性能,所以对参数设置的研究越来越重要,而目前对它的研究大多还处于实验分析阶段。1.1 引言随着人们对生命本质的不断了解,生命科学也以前所未有的速度迅猛发展,使人工智能的研究开始摆脱经典逻辑计算的束缚,大胆探索起新的非经典计算途径。在这种背景下,社会性动物的自组织行为引起了人们的广泛关注,许多学者对这种行为进行数学建模并用计算机对其进行仿真,这就产生了所谓的“群智能”。受蚂蚁总能找到一条从蚁巢到食物源的最短路径的启发,意大利学者M. Dorigo与20世纪90年代提出了一种新型的智能优化算法蚁群优化算法(Ant Colony Optimization,ACO)1。在不长的时间里,
10、蚁群算法得到了不断发展和完善,而且被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。1.2 群智能群智能指的是“无智能的主体通过合作表现出智能行为的特性”2,是一种基于生物群体行为规律的计算技术。它受社会昆虫,例如蚂蚁、蜜蜂和群居脊椎动物,又如鸟群、鱼群和兽群等的启发,解决分布式问题。它在没有集中控制并且不提供全局模型的前提下,为寻找复杂的分布式问题的解决方案提供了一种新的思路。 有些专家在研究自然界的生物群体系统时,惊奇地发现社会
11、昆虫和群居的脊椎动物能发现新的食物源、在群体内部产生劳动分工,建筑庞大复杂的巢穴、跨越几千公里迁徙到指定地区和在狭窄的空间内协调调度等。这些社会性动物的自组织行为引起了人们广泛的关注,许多学者对这种行为进行数学建模并用计算机对其进行仿真,发现群智能有如下特点和优点2:(1) 群体中相互合作的个体是分布的(Distributed),这样更能够适应当前网络环境下的工作状态。(2) 没有中心的控制与数据,这样的系统更具有鲁棒性(Robust),不会由于某一个或者某几个个体的故障而影响整个问题的求解。(3) 可以不通过个体之间直接通信,而是通过非直接通信进行合作,这样的系统具有更好的可扩充性(Scal
12、ability)。(4) 由于系统中个体的增加而增加的系统通信开销在这里是十分小的,系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性(Simplicity)。 1.3 蚁群算法的提出目前,群智能理论研究领域包括两种主要算法:蚁群算法(Ant Colony Optimization,简记ACO)和粒子群算法(Particle Swarm Optimization,简记PSO)。而以蚁群算法为代表的群体智能已成为当今分布式人工智能研究的一个热点,它是由意大利学者M. Dorigo、V. Maniez-zo、A. Colorini3,4,5等人从生物进化机制
13、中受到启发,通过模拟自然界蚂蚁搜索路径的行为后,于1991年首先提出的,也叫蚂蚁系统(Ant System,AS)。M. Dorigo等人充分利用蚁群搜索食物的过程与著名的旅行商问题(Traveling Salesman Problem)之间的相似性,吸收了蚂蚁的行为特征,设计虚拟的“蚂蚁”摸索不同的路线,并留下会随时间逐渐消失的虚拟“信息量”2。虚拟的“信息量”会挥发,当蚂蚁每次随机选择要走的路径时,倾向于选择信息量比较浓的路径。根据“信息量浓度更近”的原则,既可选择出最佳路线。虽然蚁群算法的研究时间不长,但初步研究已显示它在求解复杂优化问题方面具有很大优势,特别是1998年在比利时布鲁塞尔
14、专门召开了第一届蚂蚁优化国际研讨会后,现在每两年召开一次这样的蚂蚁优化国际研讨会。这标志着蚁群算法的研究已经得到国际上的广泛支持,使得这种新兴的智能进化仿生算法展现出了勃勃生机6。1.4 本文研究工作本文围绕蚁群算法的原理、改进及其应用展开研究,全文共分六章,各章内容安排如下:第一章:绪论本章首先对群智能进行介绍,然后阐述蚁群算法产生的背景。第二章:蚁群算法概述本章详细介绍蚁群算法原理及其优缺点。第三章:蚁群算法的参数设置研究本章针对参数设置进行大量实验,并对实验结果做出研究分析,得出参数m,Q的选择规律,在此基础上,提出新的有效方法对蚁群算法最优组合参数进行选择。第四章:蚁群算法实验分析本章
15、分析几种改进的蚁群算法,并采用国际上通用的测试问题库TSPLIB中的对称TSP问题作为测试对象,通过仿真试验对六种算法各自求解TSP问题的性能进行比较,得出当TSP问题最优解相同时,可依据其他性能(迭代次数、迭代时间等)得出TSP问题的最优结果。 第五章:可视化编程针对陈烨的“蚁群算法实验室”进行优化和改进。第六章:结论与展望总结本文工作,提出展望。 2 蚁群算法概述 下面详细介绍蚁群算法原理及其优缺点。2.1 蚁群算法基本原理现实生活中单个蚂蚁的能力和智力非常简单,但他们能通过相互协调、分工、合作来完成筑巢、觅食、迁徙、清扫蚁穴等复杂行为,尤其以蚂蚁总能找到一条从蚁巢到食物源的最短路径而令人
16、惊叹。根据仿生学家的长期研究发现:蚂蚁虽没有知觉,但运动时会通过在路径上释放出一种特殊的分泌物-信息素来寻找路径。蚂蚁个体之间就是利用信息素作为介质来相互交流、合作的。某条路上经过的蚂蚁越多,信息素的强度就会越大,而蚂蚁能感知路上信息素的存在和强度,它们倾向于选择外激素强度大的方向,因为通过较短路径往返于食物和巢穴之间的蚂蚁能以更短的时间经过这条路径上的点,所以这些点上的外激素就会因蚂蚁经过的次数增多而增强,这样就会有更多的蚂蚁选择此路径,这条路径上的外激素就会越来越强,选择此路径的蚂蚁也越来越多。直到最后,几乎所有的蚂蚁都选择这条最短的路径。蚁群算法可以表述如下:在算法的初始时刻,将m只蚂蚁
17、随机地放到 n 座城市,同时,将每只蚂蚁的禁忌表的第一个元素设置为它当前所在的城市。此时各路径上的信息素量相等,设ij(0) = C(C 为一较小的常数),接下来,每只蚂蚁根据路径上残留的信息素量和启发式信息(两城市间的距离)独立地选择下一座城市,在时刻 t,蚂蚁 k 从城市i转移到城市j 的概率(t)为: (2. 1)其中,Jk(i)= 1,2,n- tabuk 表示蚂蚁 k 下一步允许选择的城市集合。列表tabuk记录了蚂蚁 k 当前走过的城市。当所有 n 座城市都加入到tabuk中时,蚂蚁 k 便完成了一次周游,此时蚂蚁 k 所走过的路径便是 TSP 问题的一个可行解。(2. 1)式中的
18、ij 是一个启发式因子,表示蚂蚁从城市 i 转移到城市 j 的期望程度。在 AS 算法中,ij 通常取城市 i 与城市 j 之间距离的倒数。和分别表示信息素和启发式因子的相对重要程度。当所有蚂蚁完成一次周游后,各路径上的信息素根据(2. 2)式更新。 (2. 2) (2. 3)其中(0 1)表示路径上信息素的蒸发系数,1- 表示信息素的持久性系数;ij表示本次迭代边 ij 上信息素的增量。kij表示第 k 只蚂蚁在本次迭代中留在边ij 上的信息素量。如果蚂蚁 k 没有经过边 ij,则kij的值为零。kij表示为: (2. 4)其中,Q 为正常数,Lk 表示第 k 只蚂蚁在本次周游中所走过路径的
19、长度。M. Dorigo 提出了 3 种 AS 算法的模型 7, 式 (2.4) 称为 ant-cycle,另外两个模型分别称为 ant-quantity 和 ant-density,其差别主要在 (2. 4) 式,即:在 ant-quantity 模型中为: (2. 5) 在 ant-density 模型中为: (2. 6)AS算法实际上是正反馈原理和启发式算法相结合的一种算法。在选择路径时,蚂蚁不仅利用了路径上的信息素,而且用到了城市间距离的倒数作为启发式因子。实验结果表明,ant-cycle 模型比 ant-quantity 和 ant-density 模型有更好的性能。这是因为 ant
20、-cycle 模型利用全局信息更新路径上的信息素量,而 ant-quantity 和ant-density 模型使用局部信息。AS 算法的时间复杂度为(NC*n2*m) ,算法的空间复杂度为S(n)=O(n2)+O(n*m) ,其中 NC 表示迭代的次数,n 为城市数,m为蚂蚁的数目。2.2 蚁群算法的优点与不足众多研究已经证明 AS 算法具有很强的发现较好解的能力,这是因为该算法不仅利用了正反馈原理,在一定程度上可以加快进化过程,而且是一种本质上并行的算法。它有如下优点8:(1) 较强的鲁棒性:对蚁群算法模型稍加修改,便可以应用于其它问题。(2) 分布式计算:蚁群算法是一种基于种群的进化算法
21、,具有本质的并行性,易于实现。(3) 易于与其他方法结合:蚁群算法很容易与多种启发式算法结合,以改善算法的性能。同时它也存在一些缺陷:(1)限于局部最优解,从算法解的性质而言,蚁群算法也是在寻找一个比较好的局部最优解,而不是强求是全局最优解。(2)工作过程的中间停滞问题(stagnation behaviour),和算法开始时收敛速度快一样,在算法工作过程当中,迭代到一定次数后,蚂蚁也可能在某个或某些局部最优解的邻域附近产生停滞。(3)较长的搜索时间,尽管和其他算法相比,蚁群算法在迭代次数和解的质量上都有一定的优势,但对于目前计算机网络的实际情况,还是需要较长的搜索时间。虽然计算机计算速度的提
22、高和蚁群算法的并行性在一定程度上可以缓解这一问题,但是对于大规模复杂的计算机网络,这还是一个很大的障碍。2.3 本章小结 本章主要介绍了蚁群算法基本原理,并针对其优缺点,进行了介绍和讨论。蚂蚁通过释放一种特殊的分泌物-信息素来寻找路径,蚂蚁个体之间也通过信息素进行交流与合作。蚁群算法的优势主要体现在鲁棒性,分布式,移植性等方面,而其缺陷,就目前来说,主要在局部最优,工作停滞,搜索时间长等方面。3 蚁群算法的参数设置研究蚁群算法在TSP 问题应用中取得了良好的效果,但也存在下列不足: (1) 如果参数、m、Q等设置不当,会导致求解速度很慢且所得解的质量特别差;(2) 基本蚁群算法计算量大,求解所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能 近年来 人工智能 研究 一个 热点话题 算法
链接地址:https://www.31ppt.com/p-1674833.html