文章-三维虚拟仿真系统中有限元参数化方法实现.docx
《文章-三维虚拟仿真系统中有限元参数化方法实现.docx》由会员分享,可在线阅读,更多相关《文章-三维虚拟仿真系统中有限元参数化方法实现.docx(8页珍藏版)》请在三一办公上搜索。
1、三维虚拟仿真系统中有限元参数化方法实现廉 江2,马 青1,曹卫星2,王 欣1 (1 大连理工大学机械工程学院 116023 2 中石化第二建设公司 210033)摘要:为保证吊装的安全进行,吊装辅助件的选择与设计至关重要,通常采用人工校核的方法,且多有重复性,有必要对有限元分析软件ANSYS进行二次开发,实现吊装辅助件的参数化分析。本文采用ANSYS自带编程语言APDL编写参数化命令流程序,对其进行参数化有限元分析,并通过具体算例证明了该方法的可行性与准确性。关键字:ANSYS;参数化;APDL;吊装辅助件;三维虚拟仿真系统引言在大型设备的吊装过程中,为保证安全有效地进行吊装作业,对吊装辅助件
2、如平衡梁、索具、吊耳等的设计及强度与刚度的校核计算至关重要。目前,国内多家建设公司采用以手工校核为主的计算方式,计算公式较多,内容繁锁,且多有重复性。近几年来,随着有限元理论的不断发展与成熟,一些国际知名的有限元分析软件如ANSYS等被越来越多的用户所认可,将有限元理论应用到对吊装辅助件的强度校核中有极大地现实意义,可以避免传统的手工计算只能对特定的吊耳截面进行校核的局限性,能够查看吊耳任何位置的应力情况,同时,由于吊耳的结构形式基本相同,采用有限元参数化的方法,省去重复建模的过程,能够为设计人员减轻工作负担,提供设计依据,缩短设计周期。本文采用有限元分析软件ANSYS自带编程语言APDL对吊
3、装辅助件进行参数化分析,抽象提取各种设计参数,编制APDL命令流程序,同时通过xml格式的文件实现三维虚拟仿真系统中不同模块间的数据传输问题1。用户在使用时按照界面要求输入相应数据,即可对ANSYS进行批处理分析,同时自动截取各种方位的吊装辅助件的应力云图,提取最大应力点,生成各节点应力分析报告。1. 吊装辅助件的参数化特点在吊装过程中常用的吊装辅助件一般结构型式比较固定2,如图1所示。从图中可以看出,虽然不同类型的吊耳结构相差较大,但同类型的吊耳结构却十分相似,如管轴式吊耳的区别之处仅为主筋板类型的不同,对于这种拓扑结构基本一致只有少量特征差异的系列化产品,对其进行有限元参数化设计计算是完全
4、可行的。同时在吊装过程中当吊装设备长度较长时,容易出现挠度过大的现象,对设备造成破坏,因此完全有必要验证吊装过程中设备的稳定性是否满足要求。分析其结构特点可知,吊装设备基本上由圆柱、圆台和球体等规则的几何体组成,完全能够实现参数化分析,保证设计人员能够随时查看设备各位置的应力情况及整体稳定性。 a. 管轴式吊耳 b. 吊盖 c. 遛尾单板式吊耳 d. 遛尾双板式吊耳图1 各吊耳的结构型式2. 有限元参数化技术有限元分析软件ANSYS通常有两种操作方式,交互式图形用户界面方式(GUI)和命令流批处理方式(BATCH)3。通过GUI方式可以方便地实现交互式访问程序的各种功能,适合初学者和简单的工程
5、问题的分析和计算。命令流批处理方式是一种后台工作方式,批处理文件的编写是通过ANSYS软件自带的参数化设计语言APDL来实现4,用户可以利用APDL将ANSYS命令组织起来,编写出参数化的用户程序,从而实现有限元分析的全过程,即建立参数化的CAD模型、参数化的网格划分与控制、参数化的材料定义、参数化的载荷和边界条件定义、参数化的分析控制和求解以及参数化的后处理。APDL语言编程比较容易,调试也较简单,可以利用文本编辑器如写字板、记事本等,或者借助专门的编辑器如UltraEdit、Pspad等,直接进行参数化命令流的编写,编写完成后,在ANSYS命令输入窗口中直接输入文件名即能完成全部操作5。本
6、文根据各吊耳的结构类型,运用参数化的建模及求解思想,分别对其编写APDL命令流程序,通过仿真系统其它模块生成的xml文件提取吊耳类型的信息,选择相应的命令流文件,最终完成有限元分析的全过程。3. 吊装辅助件的有限元参数化方法研究典型的有限元分析过程为前处理、加载求解、后处理三大模块。前处理模块用来完成单元类型的选取、材料属性的定义及创建有限元模型;加载求解模块用来完成载荷及边界条件的确定及有限元的求解;后处理模块可以查看模型的应力及变形等。3.1 单元类型的选取ANSYS结构分析中最重要最常用的是梁单元(beam3、beam4、beam54、beam188等)、杆单元(link8、link10
7、)、管单元(pipe16)、板单元(shell41、shell63、shell181等)、实体单元(solid45、solid186等)。分析各种形式的吊耳结构可知,其厚度要远远小于长度,不适合用实体单元建模,且实体单元划分网格时对模型要求较高,因此在保证精度要求的基础上,对以上所述的各种吊耳形式采用shell63单元对进行模拟分析,该单元有弯曲和薄膜两种功能,面内和法向载荷都允许,每个节点上有六个自由度:X,Y,Z方向的平动和绕X,Y,Z轴的转动。对吊盖的有限元分析中,由于其厚度较大,更接近于实体,因此采用solid 45单元进行模拟分析,该单元由八个节点组成,每个节点有三个自由度,节点坐标
8、系的X,Y,Z方向的平动。3.2 参数的确定要实现有限元参数化建模,首先必须根据模型的几何结构抽象出描述模型的特征参数,并在不影响精度的情况下对分析模型进行简化,不论是吊耳、吊盖或长细设备,均可将参数分为以下几大类,如图2所示:有限元分析参数几何模型参数物理特性参数材料特性参数实常数参数载荷参数图2有限元分析参数1) 几何模型参数几何模型参数也就是结构尺寸参数,有限元模型中几何参数的选取,并不是把每一个结构尺寸全部都参数化。原因在于,这里的几何模型实际上是吊耳等结构物理特征的反映,它必须有利于有限元的计算和分析。有时,对于那些于整体分析不重要的细部结构参数甚至可以忽略。同时,对于相互间有约束关
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 文章 三维 虚拟 仿真 系统 有限元 参数 方法 实现
链接地址:https://www.31ppt.com/p-1669068.html