化工热力学第四章溶液热力学性质的计算ppt课件.ppt
《化工热力学第四章溶液热力学性质的计算ppt课件.ppt》由会员分享,可在线阅读,更多相关《化工热力学第四章溶液热力学性质的计算ppt课件.ppt(168页珍藏版)》请在三一办公上搜索。
1、2,广义地说,两种或两种以上物质彼此以分子或离子状态均匀混合所形成的体系称为溶液(solution )。,溶液的定义,3,问题的提出在20时,如何配制310-3 m3 20wt%甲醇水溶液?分别需要多少体积的甲醇与水?酿造技师在20时将50 cm3乙醇与50 cm3 水相混合,发现所配制的酒是96 cm3, 而不是100 cm3 , 那么是什么原因使得体积减少了4 cm3?,4,溶液的热力学性质与工程问题密切相关天然气和石油开采石油产品的炼制与分离煤和固体燃料的化学加工气体的净化与提纯复杂矿物的化学处理湿法冶金过程的开发聚合物的合成与加工生物技术等。本章目的是通过讨论溶液热力学性质的概念和计算
2、,为第五章研究相平衡(又即溶液热力学理论的应用)尤其是汽液平衡打下基础。,5,均相敞开系统热力学基本方程,偏摩尔量定义、以及其与摩尔量间的关系,Gibbs-Duhem方程,混合过程性质的变化,混合物中组分的逸度及计算方法,过量性质、过量函数模型与活度系数关联式,本章重点内容,理想溶液及其标准态,6,4.1均相敞开系统的热力学基本关系4.2 偏摩尔性质4.3 混合变量4.4 逸度和逸度系数4.5 理想溶液4.6 活度及活度系数4.7 活度系数模型,7,4.1 均相敞开系统的热力学关系,对均相敞开系统,若含有N个组分,其总的热力学内能Ut:,全微分,8,化学位,敞开系统的热力学基本方程表达了系统与
3、环境之间的物质与能量传递规律,表达了不同条件下热力学势能随组成的变化,是描述物质传递的强度单位,9,化学位的物理意义,化学位:在V,S和其它组分nj均不变情况下,向无限多的溶液中加入1mol的组分i所引起的内能变化。,化学位:在T、p和其它组分量nj均不变情况下,向无限多的溶液中加入1mol的组分i所引起的自由焓的变化。,10,化学位的重要意义,在处理相变和化学变化的问题时具有重要意义。在相变过程中,由于物质在不同组元间的转移是在恒温和恒压下进行的,故可以通过比较两相中物质化学位的大小来判断物质在各组元间转移的方向和限度,即物质总是从化学位较高的相转移到化学位较低的相。当物质在两相中的化学位相
4、等时,则相变过程停止,系统达到平衡态。,11,4.2 偏摩尔性质 气态溶液由于非理想性较弱,其混合物性质可以用混 合规 则进行加和即可。( 见真实气体混合物PVT关系) 但对液态溶液来说,不能气态溶液由于非理想性较弱,其混合物性质可以用混合规则进行加和即可。 偏摩尔性质是研究多元系统容量性质时重要的热力学函数,它对分析一定温度和压力下的溶液的混合变量与组成的关系十分有用,同时也是推导许多热力学关系式的基础。,12,乙醇(1)|水(2)混合物的体积,实际案例,13,原理:不同的物质在液体状态时,分子之间的作用力并不相同。酒精和水都是弱极性分子,混和后由于两种分子相互作用,使分子之间空隙减小,缩短
5、了酒精分子与水分子之间的距离,溶液的密度增大了,总体积就减小了。 原来看起来紧密无隙的液体,其实它们分子间仍有很大的空隙。当酒精和水混合后,由于酒精分子和水分子相互勾结,通过一种叫氢健的方式而彼此联连起来,使它们排列的更整齐、紧密,分子间的空隙变小,因此,液体的体积也变小了。,14,思路:既然纯物质摩尔性质Mi 不能代表该物质在溶液中的贡献,则非常有必要引入一个新的性质代替之,它能代表该物质对溶液性质的真正贡献。这个新的性质就是偏摩尔性质 (Partial molar property) 。4.2.1偏摩尔性质的引入及定义,15,说明:,2.只有广度性质才有偏摩尔性质,而偏摩尔性质是强度性质。
6、,3.纯物质的偏摩尔性质就是它的摩尔性质。,4.任何偏摩尔性质都是T,p和组成x的函数。,1.偏摩尔性质的物理意义是:在T、p和其它组分量nj均不变情况下,向无限多的溶液中加入1mol的组分i所引起的一系列热力学性质的变化。,16,偏摩尔性质的物理意义,偏摩尔性质的物理意义可通过实验来理解。在一个无限大的、颈部有刻度的容量瓶中,盛入大量的乙醇水溶液,在乙醇水溶液的温度、压力、浓度都保持不变的情况下,加入1mol乙醇,充分混合后,量取瓶上的溶液体积的变化,这个变化值即为乙醇在这个温度、压力和浓度下的偏摩尔体积。,17,4.2.2偏摩尔性质与溶液性质的关系, 溶液的摩尔性质 M 如 U、H、S、G
7、、V, 偏摩尔性质, 纯组分的摩尔性质 Mi 如 Ui、Hi、Si、Gi、Vi,如,18,4.2.3 偏摩尔性质之间的关系 与纯物质之间的热力学基本关系式相同,19,注意化学位与偏摩尔性质的区别!,化学位的定义偏摩尔性质的定义它们的区别就在于下标!,20,化学位,偏摩尔性质,偏摩尔内能:在T、p和其它组分量nj均不变情况下,向无限多的溶液中加入1mol的组分i所引起的内能变化。,化学位:在V,S和其它组分nj均不变情况下,向无限多的溶液中加入1mol的组分i所引起的内能变化。,21,偏摩尔性质的三要素:恒温、恒压;广度性质;随某组分摩尔数的变化率。偏摩尔自由焓定义为化学位是偏摩尔性质的一个特例
8、。,22,4.2.4 偏摩尔性质的计算截距法 或,偏摩尔性质与组成的关系,23,例4-1 已知定压热容的定义方程为 , 试证明 。证:已知定压热容的定义方程为 (A)式(A)的含义是压力不变,且组成不变。对于 摩尔在一定的条件下,对 微分,得,24,证毕。,25,例4-1 实验室需配制含有20%(质量分数)的甲醇的水溶液310-3m3作为防冻剂。需要多少体积的20 的甲醇与水混合。,已知:20 时20%(质量分数)甲醇溶液的偏摩尔体积 20时纯甲醇的体积 V1=40.46 纯水的体积 V2=18.04,26,解 : 将组分的质量分数换算成摩尔分数,溶液的摩尔体积为,27,配制防冻剂所需要物质的
9、摩尔数,所需甲醇和水的体积分别为,28,计算结果表明,在甲醇和水混合过程中,溶液体积缩小。20%的甲醇水溶液的总体积较配制前的总体积减少了53 cm3。,29,例4-3,30,31,32,例4-4,33,34,35,36,组分2的偏摩尔焓为,37,38,39,4.2.5 偏摩尔性质间的依赖关系Gibbs-Duhem方程在恒定的 T、p下对于二元溶液,或,40,Gibbs-Duhem 方程的推导如下,41,比较以上两式可得,Gibbs-Duhem 方程的一般形式,当T、p恒定时,42,常见的Gibbs-Duhem方程的几种形式,43,Gibbs-Duhem 方程应用在于:检验实验测得的混合物热力
10、学性质数据的正确性。从一个组元的偏摩尔量推算另一组元的偏摩尔量。,44,只要已知从 x2=0 到 x2x2 范围内的 值,就可以根据上式求另一组元在x2时的偏摩尔量 。当然还需知道纯物质的摩尔性质M1。,二元系等温、等压条件下,45,例4-5,46,47,关键需证明,或,?,?,48,49,例4-6,50,51,4.3 混合变量4.3.1混合变量的定义对于二元溶液,52,混合物的摩尔性质与偏摩尔性质的关系,Mi-是与混合物同温、同压下纯组分i的摩尔性质,53,4.3.2 混合体积变化对于二元溶液,混合体积变量间的关系,54,4.3.3 混合焓变除形成溶液时混合过程有体积变化外,有时系统还需要与
11、环境交换热量,才能维持混合后系统的不变。由于等压条件下交换的热量等于混合过程的焓变化,对于二元溶液有,55,【例4-7】,56,57,58,59,4.3.4焓浓图及其应用 -溶液的焓与浓度之间的关系曲线,即H -x图,对于二元溶液,其焓值与浓度的关系为,60,【例4-8】,61,62,63,64,【例4-9】,65,66,67,68,69,4.4 逸度和逸度系数 在处理相平衡问题时,直接使用化学位是不方便的,因而人们广泛采用了一个与化学位有关的新的热力学函数“逸度”来取而代之。一般来说,有三种不同情况的逸度, 1. 纯组分的逸度, 2. 混合物的逸度, 3. 溶液中组分的逸度。,70,4.4.
12、1 纯物质i 逸度和逸度系数的定义,71,4.4.2 纯物质逸度系数的计算4.4.2.1 计算逸度的关系式4.4.2.2 利用状态方程计算逸度的关系式(RK方程),72,73,SRK方程,PR方程,4.3.2.3由状态方程计算纯物质的逸度系数,RK方程,74,4.4.2.3 利用普遍化关系式计算逸度的关系式(1) 普遍化第二virial系数法(2) 普遍化逸度系数图4.4.2.4 利用剩余性质关系式计算逸度的关系式,75,例4-10,76,77,4.4.3 溶液的逸度fm及其逸度系数 的定义,思路:把混合物作为一个整体(虚拟纯物质)看待,78,4.4.4 混合物逸度系数的计算思路:若把混合物作
13、为一个整体来看待,则计算纯物质逸度系数的计算公式,都可以用来计算混合物的逸度系数。所不同的是,当用状态方程来计算逸度系数时,状态方程的参数,如R-K方程的,不再单纯代表纯物质的特征参数,而是与混合物的组分和组成密切相关。此时,逸度系数的计算方法应该由相应的计算公式和混合规则所构成。,79,80,81,82,4.4.5溶液中组分i的逸度 及其逸度系数 的定义,思路:与纯物质的定义对照,纯物质的逸度与为G相对应,而溶液中组分i的逸度与偏摩尔Gibbs自由能相对应,83,a.纯组分逸度fi,c.混合物的逸度f,b.混合物中组分的分逸度,三种逸度和逸度系数的比较(等温下),84,(2)式对ni求微分,
14、在一定T,P和组成下对(1)式积分:由混合理想气体真实溶液,85,在一定T,P和组成下对(4)式积分:由混合理想气体真实气体,积分得:,对比(3)式和(5)式可得:,86,将(6)式两边同时除p得:,87,对于二元体系,由于,88,例:含有20%(mol%)A、35%B和45%C的三元气体混合物,在6.08MPa、348K时混合物中组分A、B、C的逸度系数分别为0.7,0.6,0.9,试求混合物的逸度。,89,例:常压下的三元气体混合物的求等摩尔混合物的 。,90,组分逸度分别是,91,三种不同的逸度定义,92,4.4.6 混合物中组分i的逸度 及其逸度系数的计算 或4.4.6.1 用viri
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 化工 热力学 第四 溶液 性质 计算 ppt 课件
链接地址:https://www.31ppt.com/p-1664860.html