人教版二次函数的图像和性质ppt课件.pptx
《人教版二次函数的图像和性质ppt课件.pptx》由会员分享,可在线阅读,更多相关《人教版二次函数的图像和性质ppt课件.pptx(82页珍藏版)》请在三一办公上搜索。
1、二次函数的图像和性质,知识回顾,一次函数的图像有何特征?,一次函数的图像是一条 。当 时,y随x的增大而增大;当 时,y随x的增大而减小。,直线,k0,k0,3、画函数图像的基本步骤是: 、 、 。,列表,描点,连线,知识回顾,画形如y=ax2的函数图像:,1、画函数y=x2的图像;,观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:,9,4,1,1,0,4,9,-3,-2,-1,0,1,2,3,描点,连线,y=x2,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线,二次函数 y = x2的图象是一条曲线,它的形状类似于投篮球时球在空中所经过的路线,只是这条曲
2、线开口向上,这条曲线叫做抛物线 y = x2 ,,二次函数的图象都是抛物线。一般地,二次函数 y = ax2 + bx + c(a0)的图象叫做抛物线y = ax2 + bx + c,思考:这个二次函数图象有什么特征?,(1)形状是开口向上的抛物线,(2)图象关于y轴对称,(3)有最低点,没有最高点,y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点,实际上,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点顶点是抛物线的最低点或最高点,思考:这个二次函数图象有什么特征?,(1)形状
3、是开口向上的抛物线,(2)图象关于y轴对称,(3)有最低点,没有最高点,例1 在同一直角坐标系中,画出函数 的图象,解:分别填表,再画出它们的图象,如图,函数 的图象与函数 y=x2 的图象相比,有什么共同点和不同点?,相同点:开口都向上,顶点是原点而且是抛物线的最低点,对称轴是 y 轴,不同点:a 要越大,抛物线的开口越小,你画出的图象与图中相同吗?,8,4.5,2,0.5,0,8,4.5,2,0.5,8,4.5,2,0.5,0,8,4.5,2,0.5,对比抛物线,y=x2和y=x2.它们关于x轴对称吗?一般地,抛物线y=ax2和y=ax2呢?,一般地,抛物线 y=ax2 的对称轴是_,顶点
4、是_当a0时,抛物线的开口_,顶点是抛物线的最_点,a越大,抛物线的开口越_;当a0时,抛物线的开口_,顶点是抛物线的最_点,a越大,抛物线的开口越_,向下,高,大,练习: 函数 的图象是 ,顶点坐标是 ,对称轴是 ,开口方向是 .,y轴,原点,向上,低,小,3、试说出函数yax2(a是常数,a0)的图象的开口方向、对称轴和顶点坐标,并填写下表,向上,向下,y轴,y轴,(0,0),(0,0),|a|越大开口越小, |a|越小开口越大。,反馈测试,抛物线y=4x2中的开口方向是 ,顶点坐标是 ,对称轴是 .抛物线 y= -,x2 的开口方向是 ,顶点坐标是 , 对称轴是 .3. 二次函数y=ax
5、2与y=2x2,开口大小,形状一样,开口方向相反,则a= .,1二次函数y2x2的图象是_,它的开口向_,顶点坐标是_;对称轴是_,在对称轴的左侧,y随x的增大而_,在对称轴的右侧,y随x的增大而_,函数y2x2当x_时, y有最_值,其最_值是_。,课前复习,2、二次函数 y=2x 、 的图象与二次函数 y=x 的图象有什么相同和不同?,a0,a0,3、试说出函数yax2(a是常数,a0)的图象的开口方向、对称轴和顶点坐标,并填写下表,向上,向下,y轴,y轴,(0,0),(0,0),4、二次函数y2x21的图象与二次函数y2x2的图象开口方向、对称轴和顶点坐标是否相同?它们有什么关系?我们应
6、该采取什么方法来研究这个问题?,画出函数y2x2和函数y 2x2+1的图象,并加以比较,(1)二次函数 y=2x1 的图象与二次函数 y=2x 的图象有什么关系?,(0,1),(0,1),问题1:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?,2、函数y2x21的图象可以看成是将函数y2x2的图象向上平移一个单位得到的。,1、函数y2x21与y2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y 2x2的图象的顶点坐标是(0,0),而函数y2x21的图象的顶点坐标是(0,1)。,函数y2x21和y2x2的图象有什么联系?,你能由
7、函数y2x2的性质,得到函数y2x21的一些性质吗? 完成填空: 当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大,当x_时,函数取得最_值,最_值y_ 以上就是函数y2x21的性质。,0,0,=0,小,小,1,(2)二次函数 y=3x1 的图象与二次函数 y=3x 的图象有什么关系?,(0,-1),a0,(3)在同一直角坐标系中画出函数的图像,y,在同一直角坐标系中画出函数的图像,a0,(0,2),(0,-2),试说出函数yax2k(a、k是常数,a0)的图象的开口方向、对称轴和顶点坐标,并填写下表,向上,向下,y轴,y轴,(0,k),(0,k),|a|越大开口越小,反
8、之开口越大。,练习1.把抛物线 向下平移2个单位,可以得到抛物线 ,再向上平移5个单位,可以得到抛物线 ;2.对于函数y= x2+1,当x 时,函数值y随x的增大而增大;当x 时,函数值y随x的增大而减小;当x 时,函数取得最 值,为 。,0,0,=0,大,0,3.函数y=3x2+5与y=3x2的图象的不同之处是( )A.对称轴 B.开口方向 C.顶点 D.形状4.已知抛物线y=2x21上有两点(x1,y1 ) ,(x2,y2 )且x1x20,则y1 y2(填“”或“”)5.已知抛物线 ,把它向下平移,得到的抛物线与x轴交于A、B两点,与y轴交于C点,若ABC是直角三角形,那么原抛物线应向下平
9、移几个单位?,C,二次函数的图像和性质,y=ax2的函数图像y=ax2 +k 的函数图像y=a(x-h)2的函数图像y=a(x-h)2 +k 的函数图像y=ax2+bx+c 的函数图像,二次函数y=ax2+k的性质,开口向上,开口向下,a的绝对值越大,开口越小,关于y轴对称,顶点是最低点,顶点是最高点,在对称轴左侧递减在对称轴右侧递增,在对称轴左侧递增在对称轴右侧递减,k0,k0,k0,k0,(0,k),探究,解:列表,画出二次函数 、 的图像,并考虑它们的开口方向、对称轴和顶点.,-2,0,-0.5,-2,-0.5,-8,-4.5,-8,-2,-0.5,0,-4.5,-2,-0.5,x=1,
10、讨论,抛物线 与 的开口方向、对称轴、顶点?,抛物线 与 抛物线 有什么关系?,讨论,向左平移1个单位,归纳,向右平移1个单位,练习,在同一坐标系中作出下列二次函数:,观察三条抛物线的相互关系,并分别指出它们的开口方向,对称轴及顶点.,顶点(0,0),顶点(2,0),直线x=2,直线x=2,向右平移2个单位,向左平移2个单位,顶点(2,0),对称轴:y轴即直线: x=0,练习,在同一坐标系中作出下列二次函数:,观察三条抛物线的相互关系,并分别指出它们的开口方向,对称轴及顶点.,向右平移2个单位,向右平移2个单位,向左平移2个单位,向左平移2个单位,一般地,抛物线y=a(xh)2有如下特点:,(
11、1)对称轴是x=h;,(2)顶点是(h,0).,(3)抛物线y=a(xh)2可以由抛物线y=ax2向左或向右平移|h|得到.,h0,向右平移;h0,向左平移,归纳,二次函数y=a(x-)2的性质,开口向上,开口向下,a的绝对值越大,开口越小,直线,顶点是最低点,顶点是最高点,在对称轴左侧递减在对称轴右侧递增,在对称轴左侧递增在对称轴右侧递减,h0,h0,h0,h0,(,0),练习,y=-2(x+3)2,1、说出抛物线的开口方向、对称轴、顶点,最大值或最小值各是什么及增减性如何?,y=2(x-3)2,y=-2(x-2)2,y=3(x+1)2,2、若将抛物线y=-2(x-2)2的图象的顶点移到原点
12、,则下列平移方法正确的是( )A、向上平移2个单位B、向下平移2个单位C、向左平移2个单位D、向右平移2个单位,C,3、抛物线y=4(x-3)2的开口方向 ,对称轴是 ,顶点坐标是 ,抛物线是最 点,当x= 时,y有最 值,其值为 。抛物线与x轴交点坐标 ,与y轴交点坐标 。,向上,直线x=3,(3,0),低,3,小,0,(3,0),(0,36),4.用配方法把下列函数化成y=a(x-h)2的形式,并说出开口方向,顶点坐标和对称轴。,5、按下列要求求出二次函数的解析式:(1)已知抛物线y=a(x-h)2经过点(-3,2)(-1,0)求该抛物线线的解析式。,(2)形状与y=-2(x+3)2的图象
13、形状相同,但开口方向不同,顶点坐标是(1,0)的抛物线解析式。,(3)已知二次函数图像的顶点在x轴上,且图像经过点(2,-2)与(-1,-8)。求此函数解析式。,向上,直线x=-3,( -3 , 0 ),直线x=1,直线x=3,向下,向下,( 1 , 0 ),( 3, 0),知识巩固,小结,3.抛物线y=ax2+k有如下特点:,当a0时, 开口向上;,当a0时,开口向上.,(2)对称轴是y轴;,(3)顶点是(0,k).,抛物线y=a(xh)2有如下特点:,(1)当a0时, 开口向上,当a0时,开口向上;,(2)对称轴是x=h;,(3)顶点是(h,0).,2.抛物线y=ax2+k可以由抛物线y=
14、ax2向上或向下平移|k|得到.,抛物线y=a(xh)2可以由抛物线y=ax2向左或向右平移|h|得到.,(k0,向上平移;k0向下平移.),(h0,向右平移;h0向左平移.),1.抛物线y=ax2+k、抛物线y=a(xh)2和抛物线y=ax2的形状完全相同,开口方向一致;,(1)当a0时, 开口向上,当a0时,开口向下;,如何平移:,在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象观察图象,回答问题,(1)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?,(2)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大
15、?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少?,在同一坐标系中,作出二次函数y=3x, y=3(x-1)2和y=3(x-1)2+2的图象.,根据图象回答问题:三个图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?,对称轴仍是平行于y轴的直线x=1;增减性与y=3x2类似.,顶点是(1,2).,二次函数y=3(x-1)2+2的图象可以看作是抛物线y=3x2先沿着x轴向右平移1个单位,再沿直线x=1向上平移2个单位后得到的.,开口向上,当X=1时有最小值:且最小值=2.,先猜一猜,再做一做,在同一坐标系中作二次函数y=3(x-1)2-2,会是什么样?,X=1,对称轴仍是平行
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 二次 函数 图像 性质 ppt 课件

链接地址:https://www.31ppt.com/p-1660315.html