矮寨特大悬索桥施工控制实施方案.docx
《矮寨特大悬索桥施工控制实施方案.docx》由会员分享,可在线阅读,更多相关《矮寨特大悬索桥施工控制实施方案.docx(37页珍藏版)》请在三一办公上搜索。
1、湖南道路发展项目吉首至茶洞高速公路土建工程6A合同段 路桥建设投标文件湖南省吉首至茶洞高速公路第6A合同段矮寨特大悬索桥 施工控制方案路桥集团国际建设股份有限公司2006年 11 月 北京市东城区东中街9号东环广场A座路桥大厦八层 邮编号码:100027电话:010-64181166 传真:010-64181901湖南道路发展项目吉首至茶洞高速公路土建工程6A合同段 路桥建设投标文件目 录1.项目概况与特点12.施工监控的必要性、目的与目标22.1施工监控的必要性22.2施工监控的目标43.施工监控内容与方案53.1施工控制参数的选取53.2监控计算内容53.2.1前期结构分析63.2.2主塔
2、施工期结构分析73.2.3缆索施工期结构分析73.2.4主梁架设期结构分析83.3监控测试内容与方案83.3.1监控测试工作内容83.3.2线形监测93.3.3塔、梁应力监测113.3.4主缆缆力监测163.3.5吊索索力监测163.3.6温度场监测173.3.7应变测点采集仪器位置优化183.3.8主缆温度测点采集仪器位置优化204.施工程序及异常情况的对策214.1施工程序214.2施工监控基本工作流程224.3异常情况对策235.施工监控最终目标及成果形式246.监控实施组织研究组织形式及人员安排256.1监控现场结构组织方案256.2监控人员总体安排256.3施工监控工作流程示意图26
3、6.4监控中各单位的工作协作267.研究工作布署(包括人员、设备等进场计划等)277.1人员及设备配备277.2人员开展研究及进出场时间安排287.3仪器进出场时间安排288.主桥施工监控各阶段工作流程288.1前期计算阶段288.2桥塔施工阶段308.3主塔完成、缆索系统施工准备期308.4猫道架设完成318.5基准索股架设318.6其它索股架设328.7索股架设完成328.8主梁吊装阶段338.9桥面铺装阶段338.10成桥恒载状态348.11项目总结34 北京市东城区东中街9号东环广场A座路桥大厦八层 邮编号码:100027电话:010-64181166 传真:010-64181901湖
4、南道路发展项目吉首至茶洞高速公路土建工程6A合同段 路桥建设投标文件1.项目概况与特点吉茶高速公路是湖南省的一条重要旅游通道,由于项目所在区域独特的自然地理条件和丰富的社会文化背景,2004年4月交通部将其纳入全国首批公路勘察设计典型示范工程项目。矮寨特大悬索桥为吉茶高速公路的控制性工程,桥位处距吉首市区约20公里,于K14+571.30处跨越矮寨镇(G209 2303公里处)附近的山谷,德夯河流经谷底,谷底标高约240m,桥面设计标高与地面高差达330m左右,山谷两侧悬崖从900m到1300m之间变化。矮寨特大悬索桥为塔梁分离式单跨双索面钢桁加劲梁悬索桥,主缆的孔跨布置为:242m+1176
5、m+116m,主梁全长1000.5m;主桥横桥向设2%横坡,桥面系宽24.5m,钢桁加劲梁全宽27m。主缆采用预制平行钢丝索股(PPWS),单束索股由127根公称直径为5.25mm、公称抗拉强度为1670MPa的高强度镀锌钢丝组成,排列呈近似正六边形,紧缆后主缆为圆形,索夹内直径为855mm(吉首岸边跨)、844mm(中跨和茶洞岸边跨),索夹外直径为870mm(吉首岸边跨)、859mm(中跨和茶洞岸边跨),索股锚头采用热铸锚;主索垂跨比F/L=1/9.6,主索中心距为27m,采用平面索布置;每根主缆中,从吉首岸锚碇到茶洞岸锚碇的索股有169股(通长索股),吉首岸边跨另设6根索股灾吉首岸主索鞍上
6、锚固(背索);全桥采用71对吊索,吊索标准间距14.5m,端吊索间距29m;主跨梁高(主桁中心线处)7.5m;主梁桥台处设竖向支座和横向抗风支座。索塔采用双柱式门式框架结构,由扩大基础、塔座、塔柱(上塔柱、中塔柱、下塔柱)和横梁(上横梁、中横梁)组成。索塔自基础以上高129.316m(吉首岸)、61.924m(茶洞岸)。本桥采用预应力锚固系统,由索股锚固连接器和预应力钢束锚固系统构成。吉首岸重力锚散索长度29米,锚固长度25米;茶洞岸隧道锚散索长度29米,锚固长度43米。本桥结构存在以下特点:边跨缆索不对称。由于锚碇布置位置的需要,边跨缆索的水平跨度在吉首岸为242m,在茶洞岸为116m,两边
7、跨缆索不对称,造成主缆及锚碇受力不同,线形、索股数量也不同,在施工控制中需要区别对待。图1-1 主桥总体布置图图1-2 主梁断面图2.施工监控的必要性、目的与目标2.1施工监控的必要性从上世纪90年代到现在,全球范围内掀起了一股建设大跨度悬索桥的热潮。上世纪90年代修建的悬索桥中,就有7座主跨跨径超过千米。他们分别是:日本明石海峡大桥(主跨跨径1991米,居世界第一)、丹麦大海带桥(主跨跨径1624米,居世界第二)、中国润扬长江公路大桥(主跨跨径1490米,居世界第三)、中国江阴长江公路大桥(主跨跨径1385米,居世界第五)、中国香港青马大桥(主跨跨径1377米,居世界第六)、瑞典滨海高桥(主
8、跨跨径1210米,居世界第九),还有日本的尾道今治线上的来岛二桥、三桥(主跨跨径分别为1020米、1030米)。国内正在建设的工程中,舟山连岛工程中的西堠门悬索桥将以跨径1650米位于中国第一、世界第二,武汉阳逻长江公路大桥主跨达1280m,建成后将与美国金门桥并列,居世界第八位。除了上述跨径大于千米的悬索桥之外,中国已经在上世纪90年代中建成主跨为648m的厦门海沧大桥、主跨为900m的西陵长江大桥、888m的广东虎门大桥、452m的广东汕头海湾大桥、960m的湖北宜昌长江大桥及612m的重庆鹅公岩长江大桥。可以说,中国的悬索桥建设已经位于世界前列。悬索桥是一种以缆索为主要承重构件的柔性桥梁
9、,缆索长度和线形对全桥的几何形状和受力具有决定性影响,因此,悬索桥设计和施工中必须保证缆索长度和线形的准确。悬索桥缆索的长度和线型是通过事先精确计算、制造和安装时严格控制误差来保证的,施工中进行调整的措施非常有限。因此,悬索桥施工监控的计算成为施工中极为重要的环节。另一方面悬索桥在施工过程中存在着各种各样的随机因素,它们都可能影响悬索桥在施工过程中的安全和成桥后线形。通过施工实时监控,掌握实际荷载情况并结合测量得到的结构状态,找出结构产生误差的原因,并通过以后各阶段的各种可能的修正来保证施工过程中结构的安全,使成桥状态最大可能地逼近设计内力和线形。从设计到施工,由于各种计算或施工误差,悬索桥实
10、际所呈现的线形和内力与设计者当初的意图往往有很大的差距。这种引起误差的因素主要有以下几种: 设计时的计算误差。对于主缆的计算,设计单位和施工监控单位采用的方法不一样,对于一些参数的处理也有较大的差异,而且在设计过程中没有也不可能全面考虑施工中存在的各种因素。因而,施工监控中不能直接采用当初设计时所计算的用于控制施工的各种参数值。 施工中结构定位存在的误差。实际施工中,索塔、锚碇的定位不可避免地存在误差。当索塔或锚碇的实际位置与设计不符时,必然影响到主缆的线形,进而对结构的内力和主梁的线形产生影响,因此必须对施工监控数据进行修正计算。 施工中还存在着其它误差,如材料特性、安装精度、环境温度等,都
11、将影响结构线形和内力。这些误差对矮寨特大悬索桥这种大跨径的、结构不对称的悬索桥来说,表现得更为明显,所以必须加以严格控制。施工监控实施过程中,一方面应该根据施工中的实际参数严格按照施工过程进行精确的分析计算,另一方面,必须根据施工中的实际监控数据进行计算参数的识别修正,并且考虑各种意外变异因素的影响,对下阶段发出的施工监控指令做出修正,这样才能保证悬索桥的整体线形和内力最终达到设计者的意图。2.2施工监控的目标矮寨特大悬索桥施工监控的主要目的是通过施工前构件无应力尺寸的精确计算和施工过程中施工误差和结构参数误差的识别,对大桥施工过程结构状态进行有效控制,确保结构在施工过程中的安全和成桥后结构受
12、力和线形满足设计要求。本桥施工监控的重点是缆索系统安装过程中和主梁安装过程内力和几何外形的监控。矮寨特大悬索桥施工监控的主要目标是通过施工前构件无应力尺寸的精确计算和施工过程中施工误差和结构参数误差的识别,对矮寨特大悬索桥施工过程结构状态进行有效控制,确保结构在施工过程中的安全和成桥后结构受力和线形满足设计要求。本施工监控项目的目标为:线形:全桥建成后在20C基准温度下: 缆索线形:跨中标高与理论值偏差在40mm以内; 主梁线形:标高与理论值偏差在30mm以内,且全垮线形匀称; 塔顶偏位误差:毫米,且不大于50mm; 桥面中线偏位:10毫米 桥长偏差:+30,-100毫米 桥头高程衔接误差:3
13、毫米对结构内力的控制精度目标为:在成桥状态下实测应力使结构处于安全受力状态。 混凝土结构应力误差:相对于计算应力20%。并且:混凝土结构不出现拉应力,普通钢筋混凝土构件压应力不超过混凝土材料轴心抗压强度设计值的0.8倍,预应力混凝土构件压应力不超过混凝土材料轴心抗压强度设计值的0.7倍; 主缆及吊索索力误差:; 钢结构应力误差:10%,且不超过钢结构材料允许应力。3.施工监控内容与方案3.1施工控制参数的选取对于矮寨特大悬索桥这样的大跨度悬索桥的施工控制,主要控制参数为: 构件无应力尺寸,包括主缆无应力长度及吊杆无应力长度; 塔顶鞍座的预偏位,在不同的施工阶段设置不同的预偏位。以上参数需要通过
14、精确的前期结构分析得到。另外,在实际施工过程中,下列参数对结构的控制精度也有较大影响: 环境温度 临时荷载 塔柱混凝土的收缩徐变系数在实际施工过程中,如果以上参数与前期计算取用参数不同,需要对前期计算得到的控制参数结果进行修正,以保证结构施工的结果能够与设计吻合。在施工控制计算中涉及到的其它结构参数(如拉索和钢丝的弹性模量和实际面积、钢梁和混凝土梁面积和重量、材料的热膨胀系数等)往往与设计时考虑的有差别,为了保证施工监控仿真计算的准确,在施工监控工作正式开展前和施工时进行必要的数据收集与对数据的分析计算。施工控制计算参数主要来源两方面:一方面来源施工设计图纸,对施工设计图纸进行深入的分析,把握
15、桥梁结构计算模型主缆、梁、塔、吊索等的坐标、依据图纸对桥梁结构构件(主缆、梁、墩、塔、吊索等)进行面积和重量计算;另一方面来源于设计、施工(加工)、监理等单位,通过对设计图纸的深入理解,向有关单位收集计算的实际参数,包括主梁和吊索的弹性模量和实际面积、钢梁和桥面板的面积和重量、材料热膨胀系数、混凝土徐变系数、施工机械重量等。3.2监控计算内容矮寨特大悬索桥为跨径1176m的超大跨度悬索桥,结构非线性效应明显。如何考虑非线性的影响是本桥结构分析的一大难点,本项目拟投入的负责人长期从事大跨度桥梁结构非线性方面的研究,积累了大量的理论基础和工程经验,可以在最大限度上保证结构分析的准确性。悬索桥是一种
16、以缆索为主要承重构件的柔性桥梁,缆索长度和线形对全桥的几何形状和受力具有决定性影响,因此,悬索桥设计和施工中必须保证缆索长度和线形的准确。悬索桥缆索的长度和线型是通过事先精确计算、制造和安装时严格控制误差来保证的,施工中进行调整的措施非常有限。因此,悬索桥工程监控的前期计算成为施工中极为重要的环节。3.2.1前期结构分析前期结构分析的内容是:根据设计图纸和预定的施工流程,进行全桥施工过程仿真分析,并得到施工监控的理想成桥状态及理论监控数据。监控单位在接收设计图纸之后,对设计图纸进行必要的复核,目的是深入理解设计图纸,领会设计单位的意图,收集设计单位的计算参数。在与设计单位的计算参数一致的情况下
17、进行全桥施工仿真分析,并与设计单位核对计算结果。如果双方计算结果出现较大差别,必须查明原因。最终得到理想成桥状态的线形和结构内力。以达成一致或相近结果的全桥仿真分析模型为基础,结合悬索桥构件线形计算的理论方法,计算得到本桥施工过程中的理论监控数据,包括: 理想成桥结构线形:这是施工监控的目标,在前期计算中与设计成桥状态一致; 锚碇位移计算:施工中锚碇的沉降量、水平位移及偏转角;锚碇的变位将对主缆的线形产生影响,进而影响主梁线形; 主塔施工定位数据:主塔施工各节段顶点沿桥梁纵向预偏量、沿桥梁横向预偏量、塔顶预抬高量(塔柱全高压缩量)等; 缆索系统监控数据:包括基准索股无应力长度、基准索股定位线形
18、、其它索股无应力长度、其它索股与基准索股的定位关系、主缆各索股在各施工阶段的理论张拉力、空缆状态下索夹的安装位置、各吊索无应力长度、主索鞍在不同施工阶段的预偏量、主索鞍顶推次数及距离、散索鞍在不同施工阶段的定位位置等; 主梁系统监控数据:各段主梁定位标高、合拢段主梁长度及端部切削角度等。与其它类型的桥梁不同,悬索桥在施工过程中的状态调整手段十分有限。一旦缆索系统安装就位,结构线形、内力状态基本就已经确定下来,施工中的调整手段十分有限,局限在索鞍位置的微调及吊索长度的微调等等。因此结构的前期分析十分重要,特别是其中的缆索系统监控数据。可以说,前期结构分析结果的精度成为悬索桥施工控制的关键。3.2
19、.2主塔施工期结构分析主塔施工期结构分析的内容是:通过对比主塔施工期间实测数据与理论计算数据,并结合最优化施工监控理论,确定优化后的主塔施工定位实施数据。另一方面,结合主塔施工期间实测数据或试验数据,可以获得某些计算参数的真实值,进而修正前期分析的计算模型,得到修正的后续工况施工监控数据。极端情况下,如果发现由于真实参数取值与设计取值不同而导致无法达到设计成桥状态,须立即与设计单位协商确定出修正的理想成桥状态。3.2.3缆索施工期结构分析缆索施工期结构分析的内容是:对比缆索前期结构分析的成果与监控实测数据,通过误差分析理论和最优化控制理论,通过控制参数的微调给出下阶段施工的最优控制数据。另一方
20、面,由于环境温度对缆索线形非常大,因此,还需要结合施工期实测得到的环境温度和缆索温度,实时修正缆索定位数据,包括基准索股定位线形、其它索股与基准索股的定位关系、主缆各索股在各施工阶段的理论张拉力、空缆状态下索夹的安装位置等。必要时,需要研究得到定位数据与温度的关系,对施工期间的实际结构定位数据做出实时修正。缆索施工过程实时控制分析采用灰色控制法,对悬索桥的每一施工阶段的控制参数进行预测,其目标是通过对这些控制参数的预测来预测结构的状态参数,用预测的状态参数与结构实际状态参数进行比较分析,以此来制定结构的优化调整方案,以期在成桥后结构的实际状态达到设计期望状态3.2.4主梁架设期结构分析主梁架设
21、期间结构分析的内容是:在这一阶段,随时对比实测的缆索线形、桥面标高和塔顶位移,计算并预测下一时段的主缆线形、桥面标高、塔顶水平位移及主索鞍顶推阶段和顶推量,确定下一节段的吊索长度微调量及主梁定位标高,以确保施工安全和成桥时桥面标高、主缆垂度、索鞍位置、各构件内力大小最大限度地符合设计理想状态。3.3监控测试内容与方案本项目的施工监控测试可分为线形观测、应力监测、索力监测、温度场监测等。3.3.1监控测试工作内容(1)主塔施工阶段 塔柱各节段顶端空间位置观测 主塔基础沉降量观测 不同阶段塔柱各监测点应变监测 不同阶段塔柱温度场监测(2)缆索施工阶段 架设第一根标准索股前施工现场气温监测 基准索股
22、线形和张拉力监测 其它各索股的线形观测,部分索股张拉力监测 成缆线形的观测及部分索股张拉力监测 主缆缠丝过程温度监测 索夹位置观测 塔顶位移及主塔基础沉降观测 塔柱关键截面应力跟踪监测 塔柱、缆索温度场监测(3)主梁施工阶段 吊索索力跟踪监测 主索鞍顶推次数及各次顶推量观测 主缆线形及索股张拉力跟踪观测 主梁各节段标高观测 主梁轴线和里程观测 主梁关键截面应力跟踪监测 塔顶位移及主塔基础沉降观测 主塔关键截面应力跟踪监测 梁、塔、索温度场监测3.3.2线形监测(1)主塔线形监测本悬索桥的主塔为混凝土门式框架结构,主塔总高度约129.516m(吉首岸)。塔柱采用爬模逐段连续施工。由于塔柱存在倾角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特大 悬索桥 施工 控制 实施方案
链接地址:https://www.31ppt.com/p-1655123.html