三维重建过程ppt课件.pptx
《三维重建过程ppt课件.pptx》由会员分享,可在线阅读,更多相关《三维重建过程ppt课件.pptx(18页珍藏版)》请在三一办公上搜索。
1、三维重建过程,1,图像预处理,2,特征点检测与匹配,3,相机标定,4,计算基础矩阵与本质矩阵,5,稠密点云的网格化,目录,图像预处理,图像预处理的目的在于改善图像的视觉效果,提高图像的清晰度,有选择的突出某些感兴趣的信息,抑制无用的信息,以提高图像的使用价值。,图像平滑处理:形态学滤波、双边滤波、自适应均值滤波、自适应中值滤波、自适应加权滤波等。椒盐噪声过滤算法:GA-BP神经网络噪声检测的自适应滤波算法。 遗传算法:Genetic Algorithm GA 反向传播神经网络:Back BP BP,特征点检测与匹配,特征点问题主要包括特征点的提取和特征点的匹配。特征点的通常理解为:某些邻域变化
2、比较大的点。如角点和噪声,因此特征点的本质问题可以归结为:在抵抗一定的图像畸变的情况下,保证特征点的正确提取和匹配。,特征点提取方法:,(1)加权平均Harris-Laplace特征点提取算法(2)基于SIFT算子的特征提取算法 尺度不变特征转换 SIFT (Scale-invariant feature transform)用来侦测与描述影像中的 局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不 变量。该算子具有对图像旋转、缩放、光照变化和仿射变换保持不变性的特点。 SIFT 方法的主要思想为:首先建立高斯差分金字塔表征,然后将每个像素点与它周围的八个点,以及上下相邻层的十
3、八个邻域点,总共 26 个点作比较。如果该点是极值点,那么就认为该点为特征点,同时计算出该特征点的主方向。由此,就可以将特征点提取出来了。,(3)基于SURF算子的特征提取算法 加速鲁棒特征(Speeded-Up Robust Features)借鉴SIFT简化思想,借助积分图和harr小波技术的使用,使模板对图像的卷积可以通过加减运算在线性时间内完成。经实验证明,SURF的检测效率要明显高于算法,且具备较优的综合性能。目前SURF算法在特征提取与匹配邻域比较流行。,特征点匹配方法:,(1)NCC特征匹配 归一化互相关(normalizes cross correlation)方法的优点是它可
4、以抵抗全局的亮度变化和对比度变化,并且速度快。 缺点是:(a)不抗图像缩放。(b)不抗大的视角的变化。(c)当初始匹配点的错误匹配率高于 40%的时候以上两种方法失效。(2)SIFT特征匹配 主要思想是用特征点的 1616 的邻域计算该邻域的每个点的梯度。然后将 1616 的区域划分为 44 的小区域,每个小区域的点向 8 个方向投影。这样总共可以得到 448=128 维的特征向量描述符。特征点的匹配首先需要将特征点旋转到它的主方向上,然后计算匹配点的 128 维特征描述符的欧式距离。距离最小的匹配点为正确匹配点。,(3)SURF特征匹配 与Sift特征点匹配类似,Surf也是通过计算两个特征
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三维重建 过程 ppt 课件

链接地址:https://www.31ppt.com/p-1642987.html