孤立子及其应用ppt课件.ppt
《孤立子及其应用ppt课件.ppt》由会员分享,可在线阅读,更多相关《孤立子及其应用ppt课件.ppt(85页珍藏版)》请在三一办公上搜索。
1、孤立子及其应用Solitons and their Applications,广州大学数学与信息科学学院尚 亚 东,一、 孤立波的发现历史,1834年8月,英国科学家、造船工程师John Scott Russell 在运河河道上看到了由两匹骏马拉着的一只迅速前进的船突然停止时,被船所推动的一大团水却不停止,它积聚在船头周围激烈地扰动,然后形成一个滚圆、光滑而又轮廓分明的大水包,高度约为0.30.5米,长约10米,以每小时约13公里的速度沿着河面向前滚动。,罗素骑马沿运河跟踪这个水包时发现,它的大小、形状和速度变化很慢,直到34公里后,才在河道上渐渐地消失。罗素马上意识到,他所发现的这个水包决不
2、是普通的水波。,普通水波由水面的振动形成,振动沿水平面上下进行,水波的一半高于水面,另一半低于水面,并且由于能量的衰减会很快消失。他所看到的这个水包却完全在水面上,能量的衰减也非常缓慢(若水无阻力,则不会衰减并消失)。并且由于它具有圆润、光滑的波形,所以它也不是激波。,罗素将他发现的这种奇特的波包称为孤立波,并在其后半生专门从事孤立波的研究。他用大水槽模拟运河,并模拟当时情形给水以适当的推动,再现了他所发现的孤立波。罗素认为孤立波应是流体力学的一个解,并试图找到这种解,但没有成功。,十年后,1844年9月Russell在向英国科学促进会第14次会议提交的论文论波动(Report on Wave
3、s)中报告了自己的观点。Russell的结论包括以下几点:1. 他在长、浅水这种固定形式下观察了孤立波。由此他推出孤立波的存在,这是他得出的意义最为重大的结果。在一致长度为h的河道中,孤立波的传播速度v由,给出,其中是波的振幅,g为重力加速度。但Russell却没能说服他的同事们,在他的有生之年(1882年死去),无法从理论上对他观察到的孤立波现象给出圆满解释。罗素所发现的孤立波现象也未能引起人们的注意。在罗素逝世100周年即1982年,人们在罗素发现孤立波的运河河边树起了一座罗素像纪念碑,以纪念148年前他的这一不寻常的发现。,Russell当时发现孤立波的河流,是流经在苏格兰、爱丁堡Her
4、iot-Watt大学校园附近的UnionCanal。为纪念Russell这一重要的科学发现,他当年发现孤立波的地方,已被列为历史名胜受到保护。英国Heriot-Watt大学在1982年曾举办了纪念Russell逝世100周年学术讨论会,来自世界各地拾几个学科的科学家聚集一堂,热烈地交谈和讨论有关孤立波和孤立子的学术问题。,当时的波动研究专家Airy爵士, Stokes爵士对他的观点提出了怀疑,Boussinesq和Rayleigh进行了进一步地研究试图去理解这种现象。后二人各自分别假设孤立波的速度远大于水深。为了近似地描述孤立波,Boussinesq提出了一个一维非线性演化方程,即后来人们命名
5、的Boussinesq方程。,它的解是双曲正割的平方.此外, 他还引入守恒密度,非线性与色散之间的平衡等。,从Russell观察到浅水孤立波到形成关于这种现象的理论之间过了60年。1895年瑞典阿姆斯特丹大学数学教授D J Korteweg指导他的学生De Vries在后者的博士论文中提出了流体中单向波传播的数学模型,即后来著名的KdV方程,其运动方程是,作适当的自变量和未知函数的线性变换,可得标准的KdV方程,这里为相对于静止水平面的波峰高度,l是静水深度,g是重力加速度,均为与水的密度、表面张力有关的物理常数。他们对孤立波现象做了较为完整的分析,并从方程求出了行波解,它属于周期性椭圆函数,
6、所以称为椭圆余弦波,在波长趋于无限情形,它描述Russell所发现的孤波的运动,而且波形是sech平方函数。,KdV方程的孤立波解,可以看出孤立波具任意常数波速,传播过程中波形不变,振幅为 ,振幅与波速成正比,波速越快,波峰愈高,波形愈窄,或者说,大波总是比小波的速度快。,这一结果回答了Airy和Stokes的反对意见,得到的孤立波解的形式也与Boussinesq 方程的双曲正割平方解一致。从而在理论上证明了孤立波的存在性。然而,这种波是否稳定,两个波碰撞后是否产生变形?这些问题长期得不到解答,以至于有些人怀疑,既然方程是非线性偏微分方程,解的迭加原理不再成立,碰撞后解的形状很可能破坏,这种波
7、是不稳定的,研究它没什么物理意义。,在这种观点的束缚下,KdV方程和孤立波长期受到埋没,似乎无人理睬。另外一个问题是,象Russell描述的这种孤立波是否在流体力学以外的其他物理领域也存在呢?,从19世纪末到20世纪中,关于孤立波的研究工作处在寂静时期,没有明显的进展。尽管在非线性电磁学、固体物理、流体动力学、神经动力学等学科中,相继提出了一些与孤立波有关的问题,但当时有关孤立波的已有的知识,在新问题面前显得很不够用,且这些问题与应用数学之间相互促进的关系,也没有得到足够的重视。人们似乎已忘记了Russell发现孤立波的重要意义。,“ 有时真理可能黯淡无光,但是任何时候也不会熄灭。” 孤立波的
8、长期埋没沉寂,并不意味着它已折戟沉沙。,二、孤立子的发现,本世纪五十年代,一个计算机数值实验开始改变孤立波的命运。美国的三位物理学家Enrico Fermi 、John Pasta和Stan Ulam于1952年开始,利用当时美国用来设计氢弹的Maniac 号计算机,对由64个谐振子组成的、振子间存在微弱非线性相互作用的系统进行了数值计算实验,企图证实统计物理学中的“能量均分定理”。,初始时刻这些谐振子的所有能量都集中在某一振子上,其它63个振子的初始能量为零。按照能量均分定理,只要非线性效应存在,就会有能量均分、各态历经等现象出现,即任何微弱的非线性相互作用都可导致由非平衡态向平衡态的过渡。
9、但是,1955年的计算结果却使他们大吃一惊,因为经过几万次计算的长时间演化后,能量并没有均分到其它振子上去,而是出现了奇怪的“复归”现象:,绝大部分能量又集中到原先那个初始能量不为零的谐振子上。经典的能量均分定理竟然没有得到证实。这就是著名的FPU问题,它与催生爱因斯坦相对论的迈克尔逊莫雷(Michelson-Morley)实验一样,被认为是对传统科学的有力挑战。,令人遗憾的是,Fermi等人当时只在频率空间考察这个实验,未能发现孤立波解,没有得到正确的解释,就这样与孤立子理论失之交臂。后来人们把晶体看成是具有质量的弹簧联接的链条,并近似模拟这种情况,Toda研究了这种模式的非线性振动,果然得
10、到了孤立波解,使FPU问题得到了正确解答。,FPU问题的出现和解决,依赖于刚诞生不久的电子计算机技术,它第一次通过数值计算的手段向人们证实了孤立波的存在,从而进一步激起了人们对孤立波研究的兴趣。1962年,Perring和Skyrme将Sine-Gordan方程用于基本粒子的研究,他们的计算结果表明,这样的孤立波并不散开,即使两个孤立波碰撞后也仍保持原有的形状和速度。,1965年,美国普林斯顿(Princeton)大学的两位数学家M. D. Kruskal和N. Zabusky基于FPU问题,将实验中能量分布几乎回归的性质与孤立波奇特的相互作用性质联系起来, 用数值模拟方法详细地研究了等离子体
11、中的孤立波碰撞的非线性相互作用过程,得到了比较完整和丰富的结果,进一步证实了孤立波在碰撞后其波形和速度保持不变的性质,这一结果彻底解除了人们此前对孤立波稳定性的怀疑。,对于两个KdV孤立波的碰撞,可以看到三个特点:1.孤立波在碰撞前后保持高度不变,像是“透明地”穿过对方;2. 碰撞时两个孤立波重叠在一起,其高度低于碰撞前孤立波高度较高的一个(这表明在非线性过程中,不存在线性叠加原理);3. 碰撞后孤立波的轨道与碰撞前有些偏离(即发生了相移)。,他们在数值实验中,既研究了两个孤立波的碰撞,也研究了四个孤立波的碰撞,并首次引入“孤立子”(Soliton)这一术语,用来描述这种具有粒子性质的孤立波。
12、 Kruskal和Zabusky根据孤立波具有类似于粒子碰撞后不变的性质,正式命名为 “孤立子(soliton)”。这是孤立波走出科学冷宫的重要里程碑。,之后,在固体物理、非线性电磁学和神经动力学等学科里也发现了与孤立波有关的问题,促使人们考虑在流体以外的领域,孤立波是否存在?若存在的话,其表示孤立波演化的微分方程应如何求解?这些问题引起了人们的关注。,目前在不同的著作中,孤立波和孤立子两者含意的区别,并不完全一致。多数作者称波形分布在有限的空间范围内,且具有弹性碰撞性质,即碰撞后保持原有的速度和波形的孤立波为孤立子。而对呈非弹性碰撞的一类,仍称为孤立波。还有的作者称KdV方程和其他类似的方程
13、的单孤立波解为孤立波,多孤立波解为孤立子。,孤立子概念的提出,开启了孤立子理论研究的新时代,各个领域的科学家们陆续对孤立子投入了巨大的热情和兴趣,迄今为止,已逐步形成了较为完整、系统的孤立子理论。,今天,对于孤立子的定义,数学家们理解为非线性发展方程局部化的行波解,经过相互碰撞后,不改变波形和速度,但相位有可能改变。物理学家理解为非线性发展方程能量有限的解,即能量集中在空间的有限区域,并不随时间的增加而扩散到无限区域中。,当然,也有作者认为,孤立波与孤立子两词沿用至今,已无严格的区别。现在物理学界,亦有人将孤立子简称为“孤子”。 从事孤立子理论研究的数学家们,多数采用以是否弹性碰撞来区分的意见
14、。但物理学家,对孤立子的定义要宽松些,认为只要波的能量有限,且分布在有限的空间或时间范围内,即使在传播过程中波形发生变化(例如光纤中的高阶光孤立子),也都称为孤立子。,现在,一般称非线性发展方程的局域化行波解为孤立波.这里的局部化是指行波解由 时的一个渐近态到 的另一个渐近态之间的过渡,本质上是在 变化的某个局部范围内完成的. 孤立波的类型有三种:钟状孤立波(bell-shape solitary wave)环状孤立波(loop solitary wave)扭状孤立波(kink-shape solitary wave),如果一个发展方程的孤立波,在与其它孤立波相互作用后,仍保持其波形和波速不变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 孤立 及其 应用 ppt 课件
链接地址:https://www.31ppt.com/p-1641154.html