第三章选址模型及应用ppt课件.ppt
《第三章选址模型及应用ppt课件.ppt》由会员分享,可在线阅读,更多相关《第三章选址模型及应用ppt课件.ppt(61页珍藏版)》请在三一办公上搜索。
1、3.1 选址的意义,选址在整个物流系统中占有非常重要的地位,主要属于物流管理战略层的研究问题。选址决策就是要确定所要分配的设施的数量、位置以及分配方案。这些设施主要指物流系统中的节点,如制造商、供应商、仓库、配送中心、零售商网点等。,3.1 选址的意义,设施数量与客户响应时间快速响应客户需求是竞争因素之一快速响应客户需求与节点设施设置的数量有关,3.1 选址的意义,选址与库存、运输成本存在密切联系,选址就是要在设施数量和成本中求得最佳。,3.1 选址的意义,就供应链系统而言,核心企业的选址决策会影响所有供应商物流系统的选址决策。,3.2 选址的影响因素,选址决策影响因素大致可分为外部因素及内部
2、因素两大类,3.2 选址的影响因素,选址决策包括地区选择和地点选择,二者需要考虑的因素有所不同。地区选择要考虑的是宏观因素;地点选择要考虑的是微观因素。,3.2 选址的影响因素,按照影响因素的性质的不同,可把影响因素分成两大类:即成本因素和非成本因素。还可以根据因素对设施选址的重要性,分为:关键因素、重要因素、次要因素等。,3.3 选址模型的分类,在建立一个选址模型之前,我们需要清楚以下问题:(1)选址的对象是什么?(2)选址的目标区域是怎样的?(3)选址目标和成本函数是什么?(4)有什么样的一些约束?,3.4 选址问题中的距离计算,在选址问题模型中,最基本的一个参数是各个节点之间的距离。有两
3、种方法计算节点之间的距离:直线距离,也叫欧几里德距离(Euclidean Metric);折线距离(Rectilinear Metric),也叫城市距离(Metropolitan Metric)。,3.5 选址模型,简单模型:在一条直线上(街道)选择一个有效位置(商店),即一种设施,让这条街道上的所有顾客到达商店的平均距离最短。假设街道上顾客分布的概率(密度)为则目标函数为:,简单模型,大街上第i个位置到所选地址的距离,选择投资的位置,3.5 选址模型,定积分求导:,定积分求导,(1),其中, 被假设为在时间区间 中具有连续导数 。,莱布尼兹法则,关于一个变量(它既不是积分变量,也不进入积分上
4、下限)求导定积分,可以简单地穿过积分符号直接关于该变量求导被积函数。,3.5 选址模型,定积分求导:,定积分求导,(2),有微商公式:,定积分关于积分上限b的导数等于被积函数在t=b处的取值;定积分关于积分下限a的导数等于被积函数在t=a处的取值的负数;,3.5 选址模型,定积分求导:,定积分求导,(3),有微商公式:,右边第一项来自对被积函数中变量的求导,右边第二项来自对积分上限的求导,而且基于下列链式求导:,其中x不仅进入被积函数,而且影响积分上限,对以下函数求导,3.5 选址模型,对目标函数求导,令一阶导数为零,得:,简单模型,求解结果表明,所开设的新店面需要设置在权重的中点,即两面的权
5、重都是50%。,3.5 选址模型,连续点选址问题指的是在一条路径或者一个区域里面的任何位置都可以作为选址的问题。交叉中值模型(Cross Median)通过交叉中值的方法对单一设施平面选址问题的加权城市距离进行最小化。其目标函数为:,交叉中值模型,第i个点对应的权重,例如需求;,需求点的总数目,第i个需求点的坐标;,服务设施的坐标;,3.5 选址模型,交叉中值模型的目标函数可以用两个互不相干的部分来表达:,交叉中值模型,是x方向所有权重的中值点;,是y方向所有权重的中值点;,3.5 选址模型,例1 报刊亭选址一个报刊连锁公司想在一个地区开设一个新的报刊亭零售点,主要的服务对象是附近的5个住宿小
6、区的居民,他们是新开设报刊亭零售点的主要顾客源。下图坐标系中确切地表达了这些需求点的位置,下表为各个需求点对应的权重。权重代表每个月潜在的顾客需求总量,基本可以用小区中总的居民数量来近似。经理希望通过这些信息来确定一个合适的报刊零售点的 位置,要求每个月顾客到报刊零售点所行走的距离总和最小。,交叉中值模型,3.5 选址模型,首先,确定中值,,交叉中值模型,3.5 选址模型,选址结果:,交叉中值模型,3.5 选址模型,连续点选址问题指的是在一条路径或者一个区域里面的任何位置都可以作为选址的问题。精确重心法(Exact Gravity)交叉中值模型使用城市距离,适合小范围城市内选址问题;精确重心法
7、使用直线距离,适合大范围城市间选址问题,目标函数为,,精确重心法,与第i个点对应的权重,例如需求;,需求点的总数目,第i个需求点的坐标;,服务设施的坐标;,3.5 选址模型,精确重心法目标函数为双变量系统,分别对xs和ys求偏导,并令导数为零,求得隐含最优解的等式,,精确重心法,3.5 选址模型,迭代法:利用已知的点(xs(k-1), ys(k-1)),求出dis(k-1),再求出新的点(xs(k), ys(k)),依次求解,直到求得符合要求的解。,精确重心法,3.5 选址模型,精确重心法,迭代法步骤:(1)初始值的确定;(2)迭代;(3)中止准则;,初始值的确定:a、任意选择一个点作为初始值
8、;b、按照简化公式选择初始值;,3.5 选址模型,中止准则的确定:a、直接设置一个确定的迭代次数N;b、判断两次迭代的差值是否小于设定的阈值;C、判断总费用是否减小或两次迭代差值小于设定值,精确重心法,3.5 选址模型,精确重心法应用于报刊亭选址问题:,精确重心法,3.5 选址模型,精确重心法应用于报刊亭选址问题:,精确重心法,3.5 选址模型,精确重心法应用于报刊亭选址问题:,精确重心法,3.5 选址模型,中止准则的使用:若(1)N=2;(2)坐标值阈值为0.2;坐标值变化幅度小于4%;(3)总费用阈值为0.2;总费用相对变化幅度小于1%。,精确重心法,3.5 选址模型,补充例题:有四个零售
9、点,其坐标、物资需求量及运输费用如下表所示,请用重心法为配送中心选址。,精确重心法,第一步,按照简化公式确定初始值,,3.5 选址模型,精确重心法,第二步,以点(7.8,4.9)作为配送中心,计算距离与总费用,,第三步,计算改善的配送中心选址,,3.5 选址模型,精确重心法,第四步,以点(8.6,5.1)作为配送中心,计算距离与总费用,,第五步,计算改善的配送中心选址,,3.5 选址模型,精确重心法,第六步,以点(9.0,5.2)作为配送中心,计算距离与总费用,,此时,Z(2)=Z(1)=191,虽然结果是取小数而得,但二者已经非常接近,所以可认为最佳点为(9.0,5.2)或(8.6,5.1)
10、。,3.5 选址模型,交叉中值模型与精确重心法,3.5 选址模型,离散点选址问题指的是在有限的候选位置里面,选取最为合适的一个或一组位置为最优方案,相应的模型称为离散点选址模型。离散点选址模型与连续点选址模型的区别在于:它所拥有的候选方案只有有限个元素。对于离散点选址问题,目前主要有两种模型,分别是覆盖模型和P-中值模型。覆盖模型常用的又有集合覆盖模型和最大覆盖模型两种。覆盖模型(Covering) 覆盖模型,是对于需求已知的一些需求点,确定一组服务设施来满足这些需求点的需求。在这个模型中,需要确定服务设施的最小数量和合适的位置。该模型适用于商业物流系统,如零售点的选择问题、加油站的选址、配送
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 选址 模型 应用 ppt 课件
链接地址:https://www.31ppt.com/p-1626780.html