人工智能(知识工程和数据挖掘)课件.ppt
《人工智能(知识工程和数据挖掘)课件.ppt》由会员分享,可在线阅读,更多相关《人工智能(知识工程和数据挖掘)课件.ppt(77页珍藏版)》请在三一办公上搜索。
1、指导教师:XXX,人工智能,9.1 知识工程简介9.2专家系统可以解决的问题9.3模糊专家可以解决的问题9.4神经网络可以解决的问题9.5遗传算法可以解决的问题9.6混合智能系统可以解决的问题9.7数据挖掘和知识发现,第九章 知识工程和数据挖掘,9.1 本章讨论如何选择正确的工具,构建智能系统并将数据转化为知识?,选择正确的工具对于构建智能系统而言是最关键的部分构建智能系统的过程从理解问题域开始。首先要评估问题,确定可用的数据及解决问题需要的信息。一旦理解了问题,就可以选择合适的工具并用这个工具开发系统了,构建基于知识的智能系统的过程称为知识工程,知识有6个基本阶段1)评估问题2)获取数据和知
2、识3)开发原型系统4)开发完整的系统5)评估并修订系统6)整合和维护系统,9.2 专家系统可以解决什么问题?,9.2 专家系统可以解决什么问题?,案例:诊断专家系统开发一个智能系统,帮助修理Mac电脑的故障。专家系统可以解决这样的问题吗?,要开发计算机诊断系统,就要获取计算机故障排除的知识。使用故障排除手册是比较好的方法,手册中的知识非常简练,几乎可以直接用在专家系统中。完全可以不必咨询专家。,9.2 专家系统可以解决什么问题?,故障是通过一系列可视的检查或测试来发现的。首先收集最初的信息(系统没有启动),根据其作出推断。然后,收集另外的信息(电源良好、电线没有问题)。最终确定导致故障的原因。
3、,9.2 专家系统可以解决什么问题?,大,9.2 专家系统可以解决什么问题?,Rule: 1if task is system start-upthen ask problemRule: 2if task is system start-upand problem is system does not startthen ask test power cordsRule: 3if task is system start-upand problem is system does not startand test power cords is okthen ask test Powerstri
4、p,9.2 专家系统可以解决什么问题?,9.2 专家系统可以解决什么问题?,如何选择专家系统开发工具?应该使问题的特征和工具的功能相匹配工具不仅包含高级程序语言,如LISP、OPS、C、Java,也包含专家系统框架语言提供了更大的灵活性,但是要求的编程技巧也很高框架虽然不灵活,但是提供了内建推理引擎、解释工具盒用户界面,只需输入英语编写的规则,可快速构建原型,9.2 专家系统可以解决什么问题?,如何选择框架?选择专家系统框架的时候,要考虑的是如何表达知识的(规则或者结构)它使用的推理机制(前向链接或者后向链接)是什么框架是否支持部准确的推理以及使用的技术是什么(贝叶斯推理、确定因子或者模糊逻辑
5、)框架是否有“开放”的架构以允许使用外部的数据文件和程序以及用户如何和专家系统交互选择工具的一个重要指标是提供工具的公司的稳定性,9.2 专家系统可以解决什么问题?,公司稳定性的指标是什么一些重要的指标,例如,公司是哪年成立的、员工的人数、总收入、智能系统产品的总收入如、已售产品的数量等。,9.2 专家系统可以解决什么问题?,要先确定模糊技术是否适合解决这类问题如果不能为每个可能的情况制定出一系列的规则,那就使用模糊逻辑。如果问题本身就不严密,那么模糊技术就是最好的选择案例3:决策支持模糊技术开发一个智能系统来评估抵押申请。模糊专家系统能处理这样的问题吗?,9.3 模糊专家系统可以解决的问题,
6、首先用模糊术语表达抵押申请评估中的基本概念然后用合适的模糊工具在原型系统中实现这个概念最后用选定的测试用例来测试和优化系统,9.3 模糊专家系统可以解决的问题,9.3 模糊专家系统可以解决的问题,9.3 模糊专家系统可以解决的问题,9.3 模糊专家系统可以解决的问题,9.3 模糊专家系统可以解决的问题,9.3 模糊专家系统可以解决的问题,9.3 模糊专家系统可以解决的问题,9.3 模糊专家系统可以解决的问题,9.3 模糊专家系统可以解决的问题,开发原型系统的最后一个阶段是评估和测试,9.3 模糊专家系统可以解决的问题,案例5:预测神经网络开发一个进行房地产评估的智能系统,神经网络可以解决这个问
7、题吗?房地产评估是一个根据类似住房销售价格的知识预测给定房产的市场价的问题选择神经网络,我们无法理解房产的估价是如何得出的,因为神经网络对于用户来讲是个黑盒子,9.4 神经网络可以解决的问题,输入(房产的位置、居住面积、卧室数量、浴室数量、土地尺寸、供热系统等)输出就是我们试图预测的结果我们有很多例子来训练神经网络,即最近销售的房屋及其价格的特征,训练集需要足够的丰富,9.4 神经网络可以解决的问题,如何让确定训练集“足够大”?网络的推广能力取决于三个主要因素:训练集大小、网络的架构和问题的复杂性。公式 其中N是训练例子的数量,nw是网络中突出权重的数量,e是测试允许额网络误差有些特征(例如房
8、子的条件和位置)可以确定在1(没有吸引力)到10(很有吸引力之间),9.4 神经网络可以解决的问题,修改数据数据分为三种类型:连续数据、离散数据和分类数据 例如,例子中的面积在59231,我们可以将最小值设为50,最大值设为250,任何地域最小值的值都映射为最小值,大于最大值的值映射为最大值实际面积为121,,9.4 神经网络可以解决的问题,离散数据,例如卧室的数量和浴室的数量,也有最大值和最小值卧室的数量一般为04修改后的离散数据,9.4 神经网络可以解决的问题,分类数据,例如性别和婚姻状态可以用1/N编码来修改例如,婚姻状态可以是单身、离异、已婚、#寡,已婚的人可以用(0 0 1 0)表示
9、,9.4 神经网络可以解决的问题,输入层(有十个神经元)将修改后的输入值传到隐含层隐含层包含两个神经元,输出层只有一个神经元,隐含层和输出层的神经元使用S型激活函数,9.4 神经网络可以解决的问题,如何解释网络的输出?网络输出层的值为01之间的连续值,要解释这个结果只需要倒转程序即可例如,在训练集中,销售价格的范围在$52500$225000之间,输出值将$50000映射为0,$250000映射为1,如果网络的输出是0.3546,结果为,9.4 神经网络可以解决的问题,如何验证结果?为了验证结果可以使用没有遇到过的例子集。在训练前,将所有可用的数据随机分成训练集和测试集,可以用测试集进行测试神
10、经网络是不透明的,要想把握输入输出之间的关系,可以通过灵敏度分析执行灵敏度分析要将每个输入设成最小值,然后再设成最大值,并测量网络的输出,9.4 神经网络可以解决的问题,遗传算法可以用于很多优化问题。优化是为问题寻找较好解决方法的基本过程。问题可能有多余一个的解决方案,而这些解决方案品质不同。遗传算法产生候选解决种群,然后通过自然选择使这些解决方案进化,不好的解决方案趋向于淘汰,好的方案存活并继续繁殖。不断的重复这个过程,遗传算法就得到了最优解,9.5 遗传算法可以解决的问题,案例:旅行推销员问题开发一个可以产生优化路线的智能系统,开车旅行并参观欧洲中部和西部的主要城市然后再回家,遗传算法可以
11、解决这个问题吗?这就是著名的旅行推销员问题(TSP)。给定有限个城市N,以及每两个城市之间旅行的费用(或距离),我们要找出花费最少(或路程最短)的路线,而每个城市都能到达且仅到达一次后回到出发点TSP问题经常出现在运输和后勤应用中,例如学校所属区域接送孩子,给回家的人送饭,安排收取邮件的卡车路线,9.5 遗传算法可以解决的问题,遗传算法是怎么解决TSP问题的?首先,要决定如何表达推销员的路线。最自然的方法就是路径表示法。每个城市用字母或数字命名,城市间的路线用染色体来表示,用合适的遗传操作来产生新的路线,9.5 遗传算法可以解决的问题,TSP中的交叉操作如何进行传统形式的交叉操作不能直接在TS
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 知识工程 数据 挖掘 课件
链接地址:https://www.31ppt.com/p-1622000.html