医疗健康大数据分析应用云平台解决方案.docx
《医疗健康大数据分析应用云平台解决方案.docx》由会员分享,可在线阅读,更多相关《医疗健康大数据分析应用云平台解决方案.docx(128页珍藏版)》请在三一办公上搜索。
1、医疗健康大数据分析应用云平台解决方案目录1. 背景介绍12. 产品愿景63. 产品定位73.1 解决的问题73.2 达到的效果84. 产品理念95. 总体思路105.1 对接数据源,获取医疗卫生大数据105.2 对获取的医疗卫生大数据预处理机制115.3 建立医疗卫生大数据的存储机制125.4 医疗卫生大数据的处理和分析算法分类和形成135.5 开发专题大数据分析,形成专题大数据应用155.6 开发机构大数据分析,建立机构大数据应用165.7 建立平台应用实施推广组织机制165.8 建立平台产品优化升级服务组织机制166. 医疗健康大数据分析应用云平台建模描述和分析166.1 我们给出的相关数
2、据模型176.2 卫计委给出的相关数据模型186.3 相关数据特征对比分析227. 大数据分析应用平台支持的业务主题场景237.1 医疗卫生服务机构应用267.1.1 各级医院自身应用267.1.2 基层医疗机构自身应用307.1.3 区域卫生医疗联合体应用307.1.4 医疗卫生机构的合规应用357.2 患者医疗治疗应用387.2.1 患者就医过程提示服务387.2.2 患者服药提示服务387.2.3 患者饮食、运动、习惯注意事项服务397.2.4 患者体征和治疗效果服务397.2.5 患者交流交往服务397.3 个性化医疗服务应用397.3.1 基因测序分析应用407.3.2 个性化药物应
3、用407.3.3 个人健康管理应用417.4 慢性病预防治疗应用(疾控中心)427.4.1 慢性病检测、发现、预警服务427.4.2 慢性病诊断服务447.4.3 慢性病防控治疗服务447.5 居民健康保健应用(疾控中心)457.5.1 居民自我健康保健应用457.5.2 政府卫生管理部门进行居民健康管理应用467.5.3 政府医疗规划结构进行居民健康保健决策应用467.6 医疗卫生管理机构应用(卫生局)467.7 医疗保险管理机构应用(医保局)477.7.1 基本医疗保险的决策支持分析497.7.2 基本医疗保险费用单据的智能化审核507.7.3 基本医疗保险的有效支付和治理应用517.7.
4、4 基本医疗保险和服务监管应用517.7.5 降低看病率提升医疗效果应用517.8 医药监管机构应用(药监局)567.9 医药研发生产经营应用(医药企业)567.9.1 医药研发企业应用567.9.2 医药生产企业应用577.9.3 医药流通企业应用577.9.4 医药零售企业应用607.10 医疗卫生资源配置管理规划应用(政府主管部门)617.10.1 医疗卫生资源服务现状分析617.10.2 医疗卫生资源财务供给能力分析627.10.3 医疗卫生资源规划指标对比627.10.4 医疗卫生资源政策建议637.11 商业医疗保险应用(保险公司)637.11.1 获得新客户和保留已有客户的分析应
5、用637.11.2 有效控制医疗费用的分析应用637.11.3 商业医疗保险的保障设计和精算定价647.11.4 商业医疗保险的理赔运营管理应用657.11.5 商业医疗保险的市场和销售拓展应用677.12 公共卫生服务应用(卫生防疫中心)687.12.1 传染病预警预报697.12.2 公共卫生舆情监测预警697.12.3 疾控和保健应用707.13 政府监管应用(政府主管部门)717.13.1 医药监管应用717.13.2 医疗监管应用717.13.3 医保监管应用737.13.4 医疗服务机构和医生监管应用747.14 新型医疗卫生服务应用(政府主管部门)747.14.1 远程医疗747
6、.14.2 移动医疗757.14.3 互联网医疗767.14.4 数字医疗777.14.5 大数据医疗777.14.6 智慧医疗777.14.7 精准医疗788. 大数据分析应用平台支持的专题大数据应用788.1 患者分析(基于电子病历 EMR)798.1.1 患者数据预处理798.1.2 患者个体(个性)分析808.1.3 患者群体(统计)分析808.2 疾病分析(基于电子病历EMR和电子健康档案EHR)818.2.1 常见疾病分析818.2.2 慢性疾病分析818.2.3 疾病诱因分析818.2.4 疾病统计分析818.2.5 临床路径分析818.3 医生及医护人员分析(基于医疗卫生资源数
7、据)818.3.1 医生及医护人员资历资格分析818.3.2 医生及医护人员行医记录分析818.3.3 医生及医护人员培训进修分析818.4 处方分析(基于电子病历 EMR)828.4.1 医生用药分析828.4.2 患者用药分析828.4.3 处方用药分析838.4.4 医院科室用药分析838.4.5 安全用药分析838.4.6 处方符合性分析838.4.7 处方用药 -诊断结论关联分析848.4.8 诊断结论 -处方总价聚类分析848.4.9 患者特征 -诊断结论分类分析848.4.10 患病时间 -诊断结论序列分析858.5 居民人口分析(基于电子健康档案EHR)858.5.1 居民个体
8、健康分析858.5.2 人口群体健康分析858.5.3 人口亚健康相关因素关联分析858.5.4 人口健康相关因素关联分析858.5.5 人口健康时间空间分布分析858.5.6 人口健康预测分析858.6 药品分析(基于医药产业链数据)868.6.1 药品种类分析868.6.2 药品研发分析878.6.3 药品生产分析908.6.4 药品销售分析918.6.5 药品物流分析918.6.6 药品资金流分析928.6.7 药品信息流分析928.6.8 药品库存分析938.6.9 药品质量偏差分析978.6.10 药品不良反应药品群体不良事件分析978.7 医疗健康检验检测分析(基于电子健康档案EH
9、R)978.7.1 生理信号检测分析988.7.2 医学影像图像分析988.7.3 DNA检测和 DNA 序列分析988.7.4 重要人体征数据分析988.7.5 远程自助健康医疗检测分析988.8 医疗安全风险分析(基于电子病历EMR)988.8.1 医疗安全分析988.8.2 医疗风险分析998.8.3 假药、过期药、成分异常药的使用分析998.8.4 医疗事故诱因分析998.8.5 医疗安全风险统计分析998.9 医疗卫生资源分析(基于政府的医疗卫生资源数据)998.9.1 医生护理人员分析998.9.2 医院床位分析998.9.3 医疗检测检验能力分析998.9.4 医疗卫生资源需求分
10、析998.9.5 医疗卫生资源匹配度分析1008.9.6 医疗卫生资源对比分析1008.10 医疗卫生效果分析(基于电子健康档案 HER和医疗卫生资源数据)1008.10.1 医疗卫生满意度分析1008.10.2 医疗卫生问题诱因分析1008.10.3 医疗卫生规划符合度分析1009. 关键核心技术和算法1009.1 大数据分析能力1019.2 大数据分析技术1029.3 大数据存储技术和系统1029.4 大数据业务模型建模1039.5 大数据的实时查询1069.6 大数据的复杂分析10810. 用医疗卫生大数据为业务服务11110.1 核心理念11110.2 管理闭环11211. 未来市场前
11、景分析11512.总结117总体方案思路是:基于目前医疗服务机构及相关机构已有的HLI、NHLI、HIS 等有关系统形成并积累的医药医疗健康大数据和信息,采用最新的大数据技术、云计算技术、BI 和数据挖掘技术,形成对医疗行业具有新视角、全方位、智能性、预测性、可视性的深层次展示分析效果( Insight),揭示医疗行业整体规律和内在发展趋势,揭示患者个体的独有特质并形成个性医疗,将医疗行业的宏观大势与每个患者的微观个体定性定量描述有机结合,达到支撑和形成医疗行业新应用场景和新服务模式。“医药医疗健康大数据”是具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产,但需要新
12、计算处理模式。1. 背景介绍大数据就是那些具有规模大、速度快、种类多三大特征的数据资产。大数据分析从海量数据中筛选出有用的信息,然后通过各种手段将信息转化为洞察力,从而做出正确决策,并最终推动业务发展。通 过一系列分析处理, 大数据可以帮助企业制定明智且切实可行的战略, 获取前所未有的客户洞察, 支持客户购买行为, 并构建新的业务模式, 进而赢得竞争优势。随着人们的生活水平不断提高,健康也越来越受到家庭的关注。我国卫生部公布的第四次国家卫生服务调查结果显示, 我国居民脑血栓,糖尿病,高血压等慢性病病例数达到 2.6 亿,占全国总人数的20%,其中高血压病人对自身疾病的知晓率只有 30%,同时这
13、些病人中的治疗率只有 25%,控制率仅为 6%,糖尿病病人中,能坚持做到规范治疗的也只有33%。由此我们可以看出,建立科学、规范、高质量 的慢性病管理策略, 实现对人体慢性病的监护具有重大的意义。通过慢性病的早期诊断和监护, 不仅能提前预防和控制各种疾病,还能帮助他们合理用药,减少医药开支。另一方面,我国公共医疗卫生资源 紧缺,城乡医疗卫生资源的差距比较大,城市人口平均拥有的医疗卫生资源是农村人口的2.5倍以上,比如,占全国总人口近70%的农村拥有全国医疗卫生资源的30%,而占全国总人口30%的城市却占有全国医疗卫生资源的70%,优质的医疗卫生资源集中分布在城市,尤其 是大城市。 因此,实现城
14、乡之间的医疗卫生资源共享成为丞待解决的重要问题。同时,随着国家积极倡导“ 3521”医疗系统建设,我国医疗领域信息化程度得到了很大的提高, 预计在全国会出现上百个医疗数据中心,每个数据中心都将承载近1000万人口的医疗数据,数量多、更新快且类型繁杂, 使医院数据库的信息容量不断膨胀,这就产生了医疗健康大数据。医疗健康大数据通常具有以下特征:(1) 数据巨量化 :区域医疗数据通常是来自于拥有上百万人口和上百家医疗机构的区域, 并且数据呈持续增长的趋势。依照医疗行业的相关规定,患者的数据通常至少需要保留50年。(2) 服务实时性 :医疗信息服务中会存在大量在线或实时数据 分析处理的需求。例如:临床
15、中的诊断和用药建议、 健康指标预警等。(3) 存储形式多样化 :医疗数据的存储形式多种多样, 例如各种结构化数据表、非 (半)结构化文本文档、医疗影像等。(4) 高价值性 :医疗数据对国家乃至全球的疾病防控、新药研发和顽疾攻克都有着巨大的作用。因此,如何在海量的医疗健康大数据中提取信息的能力正快速成为战略性发展的方向, 通过大数据分析挖掘出有价值的信息,将对疾病的管理、控制和医疗研究都有着非常高的价值。目前,大数据、云计算是已经普及并成为IT行业的主流技术。国内外都已经进入了大数据、云计算的研究热潮,同时大数据、云计 算技术也逐渐成熟, 大规模区域医疗信息系统和大型数据中心的建立也在同时进行。
16、而云计算是大数据成长的驱动力,与此同时,由于医 药医疗健康大数据越来越多,对云计算的需求日益增长, 所以二者是相辅相成的。随着医疗数据的急剧增长,如何充分利用这些数据,运 用大数据、云计算技术,搭建合理先进的数据云服务平台,为广大患 者、医务人员、 科研人员提供服务和协助,必将成为未来信息化工作的重要方向。“大数据时代”已经降临, “大数据”正在对每个领域都造成影响。在商业、经济及其他领域中,决策行为将日益基于数据和分析的 结果,而非基于经验和直觉;而在公共卫生、经济发展和经济预测等领域中,“大数据” 的预见能力也已经崭露头角。 美国政府公布了 “大数据研发计划”( Big Data Rese
17、arch and Development Initiative)。该计划的目标是改进人们从现有的海量和复杂的数据中获取知识的能力。其中,与医疗卫生领域相关的有生物传感2.0 、虚拟实验室环境( VLE)、癌症基因组图谱 (TCGA)、神经科学信息框架 (NIF) 、患者报告结果测量信息系统(PROMIS) 等 10余项。美国的公共数据开放项目 OpenFDA上线之后,先导项目开放了“300 万份药物不良反应报告”,提交给 FDA的药物不良反应和医疗过失记录。 对医疗机构来说, 不良反应和医疗过失记录起到的是长远的贡献作用,能减少医疗悲剧的重现。根据我国居民第三次死因调查报告显示,脑血管病已成为
18、居民的第一死因。脑卒中发病率正以每年8.7%的速率上升,我国每年用于 治疗脑血管病的费用约在100 亿元以上。 GE医疗中国联合国家卫生计生委脑卒中防治工程委员会( 脑防委 ) 启动了“脑卒中行动”合作战略。 GE医疗“脑卒中行动”的法宝之一就是大数据。尤其是GE构建的三级筛查网络, 对双侧内膜增厚的高危人群检出率提升了近10%。 GE搭建的脑卒中信息管理系统可以与医院Lis和His 系统全面对接, 记录患者的基本信息、 初筛信息、复筛信息、用药信息、实验室检查、体格检查信息及其随访信息等,全面跟踪患者的诊治流程。 还可以与PACS系统对接,全面记录患者的影像学信息,实现患者影像信息的共享。同
19、时,可对患者全流程疾病影像信息回顾,减少患者重复检查的负担,协助医生对患者疾病信息的全面判断。在上述这些大背景下, 本公司提出并计划研发 “医疗健康大数据分析应用平台”(以下简称“方案”)产品,以期为我国医疗卫生实现数字医疗、智慧医疗、健康医疗发挥重要作用。从而达到:服务模式(以患者为中心,形成居民健康全过程服务),从被动到主动;医疗模式(以预防为主,人人享有基本医疗卫生服务,将医疗卫生工作重点由后治前移到预防保健) ,从治病到防病;诊疗模式(避免各自为政,实行上下联合,专业分工) ,从排斥到联动;数据模式(从业务系统数据向整体数据转变, 改变过去的数据不统一、 不互通、不共享), 从隔离到整
20、体;技术模式(采用各种新技术手段,包括大数据、云计算、物联网、移动互联等,形成技术合力),从简单到综合的转变。2. 方案愿景形成充分发挥大数据技术的,针对医疗医药行业的, 能充分适应医疗卫生信息特征的大数据分析应用支撑平台,通过大数据分析, 达到发现知识、发现规律、预测未来,将医疗卫生行业推进进入大数据 时代提供技术可行性。3. 方案定位方案以医疗卫生行业的整体数据架构(数据模型、数据构成、数 据关系)为基础和标准,以对应的医疗卫生业务数据为输入,通过大 数据技术, 形成针对医疗卫生行业中不同机构、角色和业务活动的智能化应用, 因此方案不是代替已有医疗卫生信息化系统,而是在多个方面强化已有医疗
21、卫生信息化系统,包括任意查询、即兴分析、业务 增强、规则约束、预测未来、发现知识,并提供互动性、及时性、预 知性、洞察性,从而达到实现智慧医疗的目标。3.1 解决的问题当前医疗卫生信息化建设的主要问题是各个区域内不同医疗机构中患者的基础信息和各种临床信息资源分散、重复、孤立,导致有效信息闲置、信息重复或不一致,很难得到有效利用。通过方案实现国家医疗卫生信息化规划中“4631-2”的三大基础数据库, 即电子健康档案数据库、 电子病历数据库和全员人口个案数据库的应用落地;通过方案实现智慧医疗的核心部分,即医疗卫生服务体系的智能化,使医疗卫生的各种应用提升水平;通过方案为“看病难、看病贵”的解决提供
22、科学定量判断依据、对比分析依据和方案效果评价依据;3.2 达到的效果方案预期部署到云平台上运行,采用SOA的理念进行架构开发, 通过分层将公共大数据算法模型封装为服务,对业务应用提供服务, 同时平台业务应用也是服务的形式存在,即应用单位不再需要购买部署自己的服务器硬软件环境,只需要开通相应服务就可以了。各个应用单位根据自己的业务需要定制服务,平台支持“开通即用”服务模 式,为实现业务应用集成,方案将对外支持WebService方式的接口服务。方案希望将医疗卫生的智慧功能应用普及到业务角色和过程的方方面面,包括医生(包括专科医生、全科医生、保健医生等)、患者(包括慢性病患者、潜在患者等) 、管理
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医疗 健康 数据 分析 应用 平台 解决方案
链接地址:https://www.31ppt.com/p-1616243.html