椭圆的切线方程.doc
《椭圆的切线方程.doc》由会员分享,可在线阅读,更多相关《椭圆的切线方程.doc(12页珍藏版)》请在三一办公上搜索。
1、“ “椭圆的切线方程椭圆的切线方程”教学设计”教学设计 马鞍山二中 刘向兵 一、教学目标一、教学目标 知识与技能:知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观:情感态度与价值观: 通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点二、教学重点与难点 教学重点:教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点教学难点:椭圆的切线方程的探究。 三、教学流程设计三、教学流程设计 ( (
2、一)创设情境一)创设情境 复习:怎样定义直线与圆相切? 设计意图设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 O( (二)探究新知二)探究新知 基础铺垫:基础铺垫: 问题 1、已知椭圆22:182xyC与直线l只有一个公共点 (1)请你写出一条直线l的方程; (2)若已知直线l的斜率为1k ,求直线l的方程; (3)若已知切点(2,1)P,求直线l的方程; (4)若已知切点5( 3,)2P,求直线l的方程。 设计意图:设计意图:(1)根据椭圆的特
3、征,可以得到特殊的切线方程如2 2,2xy。先由特殊情况过渡到一般情况。切线确定,切点确定。 (2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消元,得到一元二次方程,判别式0 。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0 。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0 。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般
4、方法。 问题一般化:问题一般化: 猜想:椭圆2222:1xyCab与直线l相切于点00(,)P xy,则切线l的方程? (椭圆的切线方程的具体求法,详情请见微课) 设计意图:设计意图:类比经过圆上一点 P(x0,y0)的切线的方程为200 x xy yr进行猜想,培养学生合情推理的能力。由于具体的求解过于繁琐,思想方法同问题 1,所以上课时没必要花费时间进行求解,做成微课方便学生课后时间自己解决。 探究:在椭圆中,有关切线问题,还可以求哪些量? 例例:已知圆的方程是x2 + y2 = r2,求经过圆上一点 P(x0,y0)的切线的方程。 xyOP 经过圆上一点 P(x0,y0)的切线的方程为2
5、00 x xy yr,且直线 OP 垂直于切线,所以,=-1opkk切线, 1.点与圆 设点P(x0,y0),圆222()()xaybr则 点在圆内22200()()xaybr, 点在圆上 22200()()xaybr, 点在圆外22200()()xaybr 由圆C方程及直线l的方程,消去一个未知数,得一元二次方程,设一元二次方程的根的判别式为,则 l 与圆C相交0 , l 与圆C相切0 , l与圆C相离0 类比到圆中: 已知圆222:C xyr与直线l相切于点00(,)P xy, 且点00(,)P xy在第一象限, 若直线l与x轴、y轴分别交于点BA、. xyOBAP 结论(1)过点 P 的
6、切线方程为200 x xy yr; (2)OPAB1OPABkk ; (可以用极限的思想理解, 当椭圆中的ab时,椭圆圆,所以221OPABbkka ) (3)过点 P 的切线方程为200 x xy yr与x轴、y轴分别交于点BA、,20(0,)rAy,20(,0)rBx, 所以00ABxky ; (椭圆中2020ABb xka y 也可理解为a趋于b时,ABk趋于00 xy) (4)2| | 2 | |2 |2ABAPBPAPBPOPr, 当且仅当| |APBPr时,取“=” 由 2014 年浙江高考题最后一道题 2014浙江卷 如图,设椭圆2222:1(0)xyCabab,动直线l与椭圆C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 切线 方程

链接地址:https://www.31ppt.com/p-1604269.html