六年级奥数-第六讲[1].分数百分数应用题.教师.doc
《六年级奥数-第六讲[1].分数百分数应用题.教师.doc》由会员分享,可在线阅读,更多相关《六年级奥数-第六讲[1].分数百分数应用题.教师.doc(14页珍藏版)》请在三一办公上搜索。
1、第六讲:分数百分数应用题例题精讲【例 1】 (小数报数学竞赛初赛)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元这样两人身上所剩的钱正好一样多问甲、乙两人原先各带了多少钱?【解析】 方法一:把甲所带的钱视为单位“”,由题意,乙花去元后所剩的钱与甲所带钱的一样多,那么元钱正好是甲所带钱的,那么甲原来带了(元),乙原来带了(元)方法二:设甲所带的钱数为份,则甲和乙都还剩份,所以每份是(元),则甲原来带了(元),乙原来带了(元).【巩固】 一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人
2、数正好相等。五年级男、女同学各有多少人?【解析】 根据题意画出线段图,找出量率对应:题中所给的已知数量虽然没有直接的对应关系,但从中可以看出,如果女工去掉5人就和男工人数的(1)相对应,因此总人数也应去掉5人,相应的与男工人数的(11)相对应。因此男工有:(1525)(11)=77(名)女工有:15277=75(名) 答:男共有77名,女工有75名。【巩固】 五年级有学生人,选出男生的和名女生参加团体操,这时剩下的男生和女生人数一样多,问:五年级女生有多少人?【解析】 男生人数为(人),女生有:(人)【例 2】 甲、乙两个书架共有本书,从甲书架借出,从乙书架借出以后,甲书架是乙书架的倍还多本,
3、问乙书架原有多少本书?【解析】 甲甲甲乙乙乙乙共本甲乙甲乙150本还剩下甲的比乙的多本甲乙甲乙150本甲乙甲乙150本甲的比乙多本同时扩大两倍这个题目的难点就在于甲乙的数目同时发生了变化,变化之后的关系是两倍还多本,也就是说:甲的比乙的的两倍还多本,如果能够正确地理解和转化这个条件,这道题也就迎刃而解了,从上图中不难看出,“甲的比乙的的两倍还多本”其实也就是“甲的比乙的多本”,如果同时扩大两倍,他们之间的关系就变成了“甲的比乙多本”,结合“甲乙的和为本”这个条件,这个问题就变成了一个简单的和倍问题了。,(本),(本)甲的书本数目(本)乙的书本数目方法二:设甲原有x本书,解得,则乙为500本。【
4、例 3】 五年级上学期男、女生共有人,这一学期男生增加,女生增加,共增加了人这一学年六年级男、女生各有多少人?【解析】 方法一:此题我们用假设法来解答假设这一学期五年级男、女生人数都增加,那么增加的人数应为(人),这与实际增加的人相差(人)相差人的原因是把女生增加的看成计算了,即少算了原女生人数的,也就是说这人正好相当于上学期女生人数的,可求出上学期女生的人数:(人),男生人数为:(人),这学年女生的人数:(人),这学年男生的人数:(人)方法二:本题可以看成男生1份女生1份13(人),那么男生20份女生20份=1320260(人),对比分析可以看出:30026040(人)对应男生的25205(
5、份),所以男生有405(251)208(人),女生有30013208105(人)。【巩固】 把金放在水里称,其重量减轻,把银放在水里称,其重量减轻现有一块金银合金重克,放在水里称共减轻了克,问这块合金含金、银各多少克?【解析】 方法一:设合金含金克,则银有克依题意,列方程得:,解得,所以这块合金中金有克,银有克方法二:本题可以看成金1份银1份50(克),那么金10份银10份=5010500(克),对比分析可以看出:770500270(克)对应金的19109(份),所以金有270919570(人),银有770570=200(人)。【例 4】 光明小学有学生人,其中女生的与男生的参加了课外活动小组
6、,剩下的人没有参加这所小学有男、女生各多少人?【解析】 (用假设法)假设男生、女生都有的人参加了课外活动小组,那么共有(人),比现在多出了(人),这多出的人即为女生的,所以女生人数为(人),男生人数为(人)【巩固】 二年级两个班共有学生人,其中少先队员有人,又知一班少先队员占全班人数的,二班少先队员占全班人数的,求两个班各有多少人?【解析】 本题与鸡兔同笼问题相似,根据鸡兔同笼问题的假设法,可求得一班人数为(人),那么二班人数为(人)【例 5】 盒子里有红,黄两种玻璃球,红球为黄球个数的,如果每次取出个红球,个黄球,若干次后,盒子里还剩个红球,个黄球,那么盒子里原有_个玻璃球【解析】 由于红球
7、与黄球个数比为,所以若每次取个红球,个黄球,则最后剩下的红球与黄球的个数比仍为,即最后剩下个红球,个黄球,而实际上是每次取个红球,个黄球,最后剩个红球,个黄球,每次少取了3个黄球,最后多剩下45个黄球,所以一共取了次,所以球的总数为个【巩固】 甲乙两班的同学人数相等,各有一些同学参加课外天文小组,已知甲班参加的人数恰好是乙班未参加人数的三分之一,乙班参加人数恰好是甲班未参加人数的四分之一,问甲班没有参加的人数是乙班没有参加的人数的几分之几?【解析】 分别用甲参、甲未、乙参、乙未表示甲、乙班参加和未参加的人数,则:甲参+甲未=乙参+乙未,【例 6】 (年第七届“希望杯”五年级一试)工厂生产一批产
8、品,原计划15天完成。实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的多10件,结果提前4天完成了生产任务。则这批产品有 件。【解析】 设原计划每天生产份,则实际每天生产份加件,而根据题意这批产品共有份,所以实际每天生产份,所以份与份加件的和相同,所以每份就是件,所以这批产品共有件.或用方程来解.【例 7】 有若干堆围棋子,每堆棋子数一样多,且每堆中白子都占28小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在,在所有的棋子中,白子将占32那么,共有棋子多少堆?【解析】 设每堆棋子为100个有x堆棋子,那么每堆中白子为28个,黑子为72个,那走一半棋子且为黑子时,还剩白
9、子为28x个,黑子为(72x50)个,所以列方程为:,解得,所以有4堆。【例 8】 我从飞机的舷窗向外看去,看见了部分海岛、部分白云以及不大的一块海域,假定白云占窗口画面的一半,它遮住了岛的,因此岛在窗口画面上只占,问被白云遮住的那部分海洋占画面的多少?【解析】 5/12.【例 9】 养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的倍鸭比鸡少几分之几?【解析】 方法一:把鸭看成单位“”,那么鸡就是,鸭比鸡少:(此时的单位“1”是鸡的只数)方法二:设鸭有份,则鸡有份,所以鸭比鸡少.【巩固】 某校男生比女生多,女生比男生少几分之几?【解析】 方法一:男生比女生多,则男生有,女生比男生少.方法二:
10、设女生有份,则男生有份,所以女生比男生少.【例 10】 学校阅览室里有36名学生在看书,其中女生占,后来又有几名女生来看书,这时女生人数占所有看书人数的问后来又有几名女生来看书?【解析】 把总人数视为“1”,紧抓住男生人数不变进行解答男生人数是人,后来阅览室的总人数是(名),后来有(名)女生进来【巩固】 (2009年五中小升初入学测试题)工厂原有职工128人,男工人数占总数的,后来又调入男职工若干人,调入后男工人数占总人数的,这时工厂共有职工 人【解析】 在调入的前后,女职工人数保持不变在调入前,女职工人数为人,调入后女职工占总人数的,所以现在工厂共有职工人【巩固】 有甲、乙两桶油,甲桶油的质
11、量是乙桶的倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的倍,乙桶中原有油 千克【解析】 原来甲桶油的质量是两桶油总质量的,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的,由于总质量不变,所以两桶油的总质量为千克,乙桶中原有油千克【例 11】 (1)某工厂二月份比元月份增产10,三月份比二月份减产10问三月份比元月份增产了还是减产了?(2)一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变?【解析】 (1)设二月份产量是1,所以元月份产量为: ,三月份产量为:,因为0.9,所以三月份比元月份减产了(2)设商品的原价是1,涨价后为,降价15%为:,现价和原价比
12、较为:0.97751,所以价格比较后是价降低了。【例 12】 某校三年级有学生240人,比四年级多 ,比五年级少 四年级、五年级各多少人?【分析】 比四年级,可以设四年级为4份,(一般情况下可设“比”、“是”、等词后面的实际量的份数为分数的分母),则三年级为5份恰有240人,所以一每份就是,所以四年级就有人,同理可设五年级有5份,则三年级有4份恰是240人,所以五年级就有300人.【巩固】 把个人分成四队,一队人数是二队人数的倍,一队人数是三队人数的倍,那么四队有多少个人?【解析】 方法一:设一队的人数是“”,那么二队人数是:,三队的人数是:,因此,一、二、三队之和是:一队人数,因为人数是整数
13、,一队人数一定是的整数倍,而三个队的人数之和是(某一整数), 因为这是以内的数,这个整数只能是所以三个队共有人,其中一、二、三队各有,人而四队有:(人)方法二:设二队有份,则一队有份;设三队有份,则一队有份.为统一一队所以设一队有份,则二队有份,三队有份,所以三个队之和为份,而四个队的份数之和必须是的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有人(人).【例 13】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的,美术班人数相当于另外两个班人数的,体育班有人,音乐班和美术班各有多少人?【解析】 条件可以化为:音乐班的人数是所有班人数的,美术班的学生人数是
14、所有班人数的,所以体育班的人数是所有班人数的,所以所有班的人数为人,其中音乐班有人,美术班有人.【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的,甲加工零件数是乙、丙加工零件总数的,则甲、丙加工的零件数分别为 个、 个【解析】 把乙加工的零件数看作1,则丙加工的零件数为,甲加工的零件数为,由于甲比乙多加工20个,所以乙加工了个,甲、丙加工的零件数分别为个、个【例 14】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的,李先生的年龄是另外三人年龄和的 ,赵先生的年龄是其他三人年龄和的,杨先生26岁,你知道王先生多少岁吗?【解析
15、】 方法一:要求王先生的年龄,必须先要求出其他三人的年龄各是多少而题目中出现了三个“另外三人”所包含的对象并不同,即三个单位“”是不同的,这就是所说的单位“”不统一,因此,解答此题的关键便是抓不变量,统一单位“”题中四个人的年龄总和是不变的,如果以四个人的年龄总和为单位“”,则单位“”就统一了那么王先生的年龄就是四人年龄和的,李先生的年龄就是四人年龄和的,赵先生的年龄就是四人年龄和的(这些过程就是所谓的转化单位“”)则杨先生的年龄就是四人年龄和的由此便可求出四人的年龄和:(岁),王先生的年龄为:(岁)方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份
16、,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】 甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的,乙队筑的路是其他三个队的,丙队筑的路是其他三个队的,丁队筑了多少米?【解析】 甲队筑的路是其他三个队的,所以甲队筑的路占总公路长的;乙队筑的路是其他三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 第六 分数 百分数 应用题 教师
链接地址:https://www.31ppt.com/p-1601660.html