斜拉桥健康监测实施参考方案.doc
《斜拉桥健康监测实施参考方案.doc》由会员分享,可在线阅读,更多相关《斜拉桥健康监测实施参考方案.doc(79页珍藏版)》请在三一办公上搜索。
1、斜拉桥健康监测实施参考方案重庆李家沱长江大桥长期健康监测方案重庆交通大学2009年5月目 录一、项目概况及意义1 大桥工程概况及现状1 工程概况1 本桥健康监测的意义及必要性3 本桥健康监测的难点6二、大桥健康监测系统总体设计7 设计原则7 系统功能总框架8 系统硬件总框架9三、健康监测范围10 实时监测范围10 定期监测范围10四、监测项目及监测方法11 监测方案的特殊要求11 桥梁位移变形监测12 主梁、索塔控制截面应力监测16 温度监测19 大桥结构动力特性监测20 斜拉索索力监测23 风速风向监测25 定期监测26 全桥传感器测点布设情况汇总29五、数据采集、传输、处理和控制子系统31
2、 数据采集子系统31 数据传输子系统33 数据处理和控制子系统34六、系统软件的设计36 数据采集管理系统36 结构监测信息管理系统37 数据库管理系统38七、结构健康评估39 总体设计39 李家沱长江大桥评估模型40八、系统运行管理及人员培训45 系统管理45 人员培训45九、现有工作基础47十、技术、经济效益、推广应用及产业化前景49 技术、经济效益分析49 推广应用及产业化前景49十一、计划实施年限、经费概算与资金筹措51 年度计划51 人员组成51 经费概算52一、项目概况及意义 大桥工程概况及现状 工程概况重庆李家沱长江大桥位于重庆市西郊九龙坡地区,大桥南岸为李家沱工业区,北岸为九龙
3、坡区。主孔全长1288m,跨径组合为:过渡孔(53m)+主孔(169m+444m+169m)+过渡孔(53m)+南引桥(8x50m),桥面宽度为4车道(中间设置分隔带),宽24m。 重庆李家沱长江大桥全景该桥结构体系为双塔双索面预应力混凝土斜拉桥,塔、墩固结。主梁为纵向悬浮体系,塔梁交叉处设置横向限位装置,在过渡孔与北台及南引桥结合处设置大位移量伸缩缝。主梁采用扁平的实心双主梁断面,。,设置横向预应力钢束。主梁在中跨的中间部分及边跨的部分区段设置有纵向预应力钢束,采用OVM锚具及高强度低松弛钢绞线。主塔呈花瓶形,塔身为矩形空心断面。拉索采用扇形双索面布置,梁上索距为9m,在塔上采用不等距排列,
4、。每个索面中有24对斜拉索。锚具采用LM7型冷铸锚锚具。主桥两个主墩基础根据地形及地质条件并结合施工难易程度作了不同的处理。2#, 3#墩采用沉井基础。该桥于1991年开始施工,1997年建成通车。 大桥现状1997年建成通车后,发现在中跨主梁和主塔斜拉索锚固区出现了大量裂缝。当时,业主委托西南交通大学对全桥的裂缝进行了普查及成因分析,得到以下结论:(1)主梁裂缝数量大。主要集中分布在2号墩16号锚箱至3号墩16号锚箱之间约150 m长度的中跨梁段,且主要分布在主梁底面及其内侧面上。裂缝走向以沿桥跨纵向为主。裂缝在侧面上的分布主要集中在自梁底面往上0. 201. 20m的高度范围内,梁体底面裂
5、缝分布主要集中在锚箱两侧。主梁侧面裂缝深度大多在3060 mm之间,最大深度97mm, 0. 45 m之间, mm;主梁底面裂缝深度大多在2040 mm之间,最大深度91 mm, mm。(2)少数主梁节段梁底面的侧面上存在横向和竖向裂缝。裂缝宽度多在0. 10 mm以下,最大为0. 13 mm;裂缝深度一般在2050 mm范围。从裂缝形态上看,此类裂缝属于混凝土收缩裂缝。(3)横隔板及顶板裂缝主要集中在中跨2号墩侧C27C31、C38C39、C41C43和3号墩侧C39C41横隔板及其附近顶板上。裂缝多分布在横隔板与顶板之间的梗肋部位,并沿梗肋向顶板延伸。其它部位裂缝较少。横隔板裂缝方向以竖向
6、为主,在横隔板与主梁结合部位有一些呈45度走向的斜裂缝;而顶板上的裂缝多为顺桥纵向裂缝,横向裂缝很少。 mm之间,。横隔板裂缝长度多数不超过1 m,最长为1. 10 m。(4) 2号墩上游塔柱裂缝主要集中在1724号锚箱之间的区段,其它3个塔柱裂缝主要集中在2024号锚箱之间的区段,裂缝基本上呈水平走向。在3号墩下游塔柱24号锚箱上侧,出现最长裂缝约15m。3号墩下游塔柱西南角南面裂缝深度多在3060 mm之间,最大深度64 mm;其它位置的裂缝深度多在2040 mm之间。(5)主梁和桥塔混凝土裂缝为非结构性受力裂缝。(6)既有裂缝不会影响桥梁目前的正常运营。(7)考虑到梁体混凝土裂缝的数量、
7、宽度、深度等均较大,部分裂缝已经深入到主筋以内,将会严重影响到桥梁的耐久性。根据裂缝成因综合结论,当时对桥塔和主梁的裂缝进行整治,同时也对塔柱上封锚砼进行整治,以达到封闭裂缝、防止裂缝进一步扩展的目的。2008年底进行的桥梁外观检查,反映出该桥目前主要缺陷有:1)塔柱砼外观共发现裂缝20条,最长的达8m,;多处由于钢筋锈蚀膨胀引起的砼脱落;3处砼空洞;钢筋露筋,个别钢筋锈蚀严重;23处预埋钢板外露并有不同程度的锈蚀;约80%的拉杆位置钢管头外露锈蚀;塔柱外观涂装多处大面积开裂、起壳、脱落。2)主桥车行道部分出现原修补处的沥青砼铺装层周边冒浆,沥青砼路面出现网状裂缝及横、纵、斜向裂缝并同时有洞穴
8、、坑函等现象,部分沥青混凝土碎裂和空鼓,在主桥车行道2号墩边跨,3号墩下游中跨处出现了穿透型裂缝和沥青砼脱落的现象。3)主引桥钢护栏和立柱出现点状锈蚀,在交接处锈蚀严重,主梁底部已锈穿。伸缩缝锚固混凝土开裂,出现裂缝,主桥主梁底板部分出现了渗水和露筋现象。4)横系梁出现了斜裂缝,在3号墩上游中跨20号索出现了3处渗水。5)(2墩2008年6月中跨下游),(3墩2008年6月中跨下游)。 本桥健康监测的意义及必要性 桥梁健康监测系统的研究现状与发展许多国家都在一些已建和在建的大跨桥梁上进行了有益的尝试:丹麦曾对总长1726m的Faroe跨海斜拉桥进行施工阶段及通车首年的监测,另外,他们在主跨16
9、24m的Great Belt East悬索桥上也开始了相关的尝试;泰国与韩国目前也已开始在重要桥梁上安装永久性的实时结构整体与安全性报警设备;香港的青马大桥、内地的虎门大桥、徐浦大桥、江阴大桥等在施工阶段也已开始传感器的安装,以备将来运营期间的实时监测。这些健康监测技术的成功开发与应用将起到确保桥梁安全运营、延长桥梁使用寿命的作用。同时通过早期桥梁病害的发现能大大节约桥梁的维修费用,可以避免最终频繁大修关闭交通所引起的重大损失。目前,。 安装了健康监测系统的部分桥梁桥名结构类型跨度(m)位置明石海峡大桥悬索桥960+1990+960日本Great Belt悬索桥535+1624+535丹麦江阴
10、桥悬索桥1388中国青马桥悬索桥1375中国香港Namhae悬索桥128+404+128韩国Seohae Bridge斜拉桥60+200+470+200+60韩国Sharsundet斜拉桥240+530+240挪威RamaIX斜拉桥166+450+166泰国距石.岛桥斜拉桥700日本Storcks Bridge斜拉桥63+61瑞士徐浦大桥斜拉桥590中国滨州黄河大桥斜拉桥84+300+300+84中国松花江大桥斜拉桥主跨365中国重庆大佛寺长江大桥斜拉桥198+450+198中国芜湖长江大桥斜拉桥180+312+180中国东营黄河大桥斜拉桥60.5+136.5+288+136.5+60.5中国
11、柳州三门江大桥斜拉桥100+160+100=360中国润扬大桥斜拉桥175.4+406+175.4中国淮安大桥斜拉桥152+370+152中国汀九桥斜拉桥127+448+475+127中国香港汲水门桥斜拉桥160+430+160中国香港桥梁结构健康监测不只是对传统桥梁检测技术的简单改进,而是运用现代的传感与通讯技术,实时监测桥梁运营阶段在各种环境荷载条件下的结构相应与行为,获取反映结构状态和环境因素的各种信息,由此分析结构的健康状态、评估结构的可靠性,为桥梁的管理与维护提供科学依据。对于具体的一座桥梁,由于其本身的结构特点和监测重点的不同,因此其相应的监测内容、规模、方式和手段及监测效果也各不
12、相同。桥梁健康检测的基本内涵是通过对桥梁结构状态的监控与评估,从而为桥梁工程在特殊气候、交通条件下或运营状况严重异常时发出预警信号,为桥梁维护、维修与管理决策提供依据和指导。根据目前国内外最新的发展,现代桥梁健康监测诊断的主要内容可概括为3个方面:结构损伤状态的识别、定位与标定;有损桥梁结构的功能定量评估;有损桥梁结构的使用风险趋势预测。由于运营中的桥梁结构及其环境所获得信息不仅是理论研究和实验室调查的补充,而且可以提供有关结构行为与环境规律的最真实的信息,因此桥梁健康监测带来的将不仅是监测系统和某种特定桥梁设计的反思,它还可能并成为桥梁研究的现场实验室。在目前阶段我国不宜普遍建造桥梁结构健康
13、监测系统,但精选个别几座代表性的大桥建造高质量的桥梁结构健康监测系统是必要的,因为他们提供了高水平的研究实验平台。有了高质量的桥梁结构健康监测系统,就可以随时做足尺全桥实验,从而大大加速我过桥梁结构健康监测系统整个领域的研究。 本桥健康监测意义近年来随着大跨径桥梁的轻柔化及形式与功能的复杂化,车流量的持续增加,对已建成的桥梁建立长期的安全健康监测、振动和损伤控制系统,将会越来越必要和迫切。健康监测技术的成功开发与应用将起到确保桥梁安全运营、延长桥梁使用寿命的作用,同时通过早期桥梁病害的发现能大大节约桥梁的维修费用,可以避免最终频繁大修关闭交通所引起的重大损失。在桥梁的建造和长期服役过程中,由于
14、受到车辆、风、人为等外部因素以及材料性能的退化、疲劳效应等内部因素的影响,桥梁结构的安全性、适用性和耐久性有很大的降低,因此,桥梁健康监测及安全评估尤为重要。李家沱长江大桥已建成运营12年,经检测发现桥梁中存在一定程度的病害,该类型桥梁的健康检测系统与新建桥梁的健康检测系统有较大的不同,必须考虑桥梁结构损伤的影响。可借鉴的成桥监测技术较少,也不完善。相比桥梁设计理论和建设技术的飞速发展,传统的桥梁测试技术相对落后;为了适应上述发展,桥梁的长期在线健康监测技术逐渐发展起来。对桥梁进行长期在线健康监测,不但可以验证桥梁的设计理论和建设技术,还可以在营运期内对桥梁进行观测,研究桥梁在正常状态下的行为
15、。考虑到大桥在运营阶段,由于受气候、氧化、腐蚀和老化等因素影响,在长期静载和活载的作用下容易遭受损坏,尤其是其超载情况严重,大大超出设计时所预计的车流量及超重荷载,从而导致桥梁强度和刚度随着时间的增加而降低,这不仅会影响安全行车,更会缩短桥梁的使用寿命。因此,为确保桥梁的使用安全,有必要针对本桥特点,建立和发展一个长期健康监测系统,利用现代化的诊断量测手段,通过对大桥关键部位的空间位置、力学性能及其变化的长期和定期监测、分析,长期积累数据,用来监测和评估大桥在运营期间结构的承载能力、运营状态和耐久能力,从而确保桥梁的使用安全与延长寿命,便于实现防患于未然,实现实时或准实时的损伤监测,对大桥结构
16、服役期间出现的损伤进行定性、定位和定量分析,分析其病害状况及病害成因,为今后进一步的桥梁病害防治及维修加固决策提供科学可靠的依据。因此桥梁健康监测不只是传统的桥梁检测加结构评估新技术,而是被赋予了结构状态监控与评估、设计理论验证和设计规范的研究与发展三方面的意义。 本桥健康监测的难点1)李家沱长江大桥属于建成多年的预应力混凝土斜拉桥,当前结构实际状态较难确定;2)结构的损伤识别存在较多问题;3)斜拉索索力的监测手段及评估方法需进一步完善;4)需考虑多类型传感器的数据采集及处理;5)基于健康监测信息的结构有限元模型修正方法有待进一步研究。6)实现将桥梁的健康监测系统与管理养护系统有机的结合。二、
17、大桥健康监测系统总体设计为了更好的了解桥梁的运行状态,有关单位定期对相关的桥梁进行了病害检测,并给出了相应的维护解决方案。对于新建桥梁,在考虑在施工过程中就引入健康检测理念,并根据大桥施工进度进行安装调试。但现有桥梁的健康检测系统,由于缺乏统一规划,在设计、实施、维护等过程中,一般都以各自独立的方式进行运作,缺乏对长远的考虑。鉴于此,对于主城区的大型桥梁,考虑按照统一规划、分步实施的原则,建立总体的监测系统框架,根据项目时间、资金配比等等,成熟一个,实施一个,逐步实现主城区大型过江桥梁的集中健康监测系统,为桥梁的维修、养护与管理决策提供依据和指导。新建桥梁:在设计过程中引入健康监测理念,结合施
18、工监测中的数据,在通车前完成健康监测系统的安装调试工作;原有桥梁:通过体检,对桥梁的健康状况进行评估,然后根据桥梁的特征和现状,实施健康监测系统的安装。各个桥梁的健康监测系统,既可独立运行,又能够提供向上的接口,集成到上级监控中心的系统里面,最终实现集中、分权、分域管理的模式。 多座大桥健康监测系统集成示意图目前本建议书中仅针对运营的李家沱长江大桥,根据以上思路,提出相应的系统方案。 设计原则李家沱长江大桥健康监测系统是一个集结构分析计算、计算机技术、通信技术、网络技术、传感器技术等高新技术于一体的综合系统工程。为使李家沱长江大桥健康监控系统成为一个功能强大并能真正长期用于结构损伤和状态评估,
19、满足桥梁养护管理和运营的需要,同时又具经济效益的结构健康监控系统,遵循如下设计原则:1)遵循总体设计,分步实施的指导思想;2)遵循简洁、实用、性能可靠、经济合理的原则;3)系统设置首先需满足李家沱长江大桥养护管理和运营的需要,立足实用性原则第一,兼顾考虑科学试验和设计验证等方面因素。4)根据结构易损性分析的结果及养护管理的需求进行监测点的布设。5)易损性分析原则考虑以下方面: 不同类型的结构受力特点、构件的工作特征; 设计时不同类型结构的控制断面、控制点; 结构不同类型材料的材料特性、使用特性; 结构受外部环境及荷载影响后最易损伤部位; 基于既有同类型结构已发生的损伤部位; 目前阶段尚未有足够
20、资料验证的关键部位。6)监测与结构安全性密切相关内容,主要监测一些有代表性的结构、必须进行监测的重要结构以及日常养护无法检查或检查非常困难的结构响应。7)从动力、静力、耐久性对结构进行监测,力求用最少的传感器和最小的数据量完成工作;8)以结构位移监测为主,以力、应力、模态分析为辅助。9)系统应具有可扩展性。 系统功能总框架 系统功能总框架图 系统硬件总框架 系统硬件总框架图三、健康监测范围监测范围的选取应遵循传感器实时监测和人工定期监(检)测相结合的原则,监测内容能覆盖结构评估的要求。根据以上原则,考虑到本桥建设过程中的特点并结合大桥近期实际运营状况,本桥健康监测系统的监测范围如下: 实时监测
21、范围 实时监测范围表序号实时监测内容监测目的1索力斜拉索索力及振幅掌握主要索的索力及加速度振幅情况2变形实时位移掌握主梁挠度变形及主塔偏位实时情况3结构温度掌握大桥梁部、塔部主要结构断面的结构温度情况4环境大气温度掌握大桥塔内外的大气温度5风速风向掌握大桥风速风向,用以推算大桥结构所受到的风荷载6动力振动掌握大桥梁部、塔部结构实时振动响应,用以计算结构模态参数7应变掌握大桥动静荷载作用下的结构应力应变情况,用以设置响应预警阈值8梁端位移掌握大桥伸缩缝位置梁端实时位移 定期监测范围 定期监测范围序号定期监测内容监测目的1安全性主墩沉降定期对主桥桥墩进行沉降测量2斜拉索索力定期对未进行长期监测的斜
22、拉索索力进行测试3斜拉索探伤定期对全部斜拉索的防护套、锚固系统、减震器进行探伤4混凝土强度定期对混凝土结构进行强度测量,评估大桥的安全性5混凝土裂缝定期对混凝土裂缝进行观测,评估大桥的安全性4耐久性氯离子含量定期对塔部混凝土进行混凝土氯离子含量测量,评估大桥的耐久性5碳化深度定期对塔部混凝土进行混凝土碳化深度测量,评估大桥耐久性6适用性桥面线形定期进行桥面线形测量,评估大桥的适用性7其它外观检查桥面状况、伸缩缝状况、支座状况、护栏状况、排水设置状况、照明设施状况、其它状况8其它车流量数据定期对车流量进行调查,为评估车辆荷载对大桥健康状况的影响提供依据。车流量作为影响桥梁工作状况的重要因素,是深
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 斜拉桥 健康 监测 实施 参考 方案
链接地址:https://www.31ppt.com/p-1599168.html