状态空间法课件.ppt
《状态空间法课件.ppt》由会员分享,可在线阅读,更多相关《状态空间法课件.ppt(77页珍藏版)》请在三一办公上搜索。
1、自动控制原理,第一章 状态空间法,一.问题的引出 1 -古典控制理论的局限性 1、仅适用于SISO的线性定常系统(外部描述,时不变系统) 2、古典控制理论本质上是复频域的方法.(理论) 3、设计是建立在试探的基础上的.(应用) 4、系统在初始条件为零,或初始松驰条件下,才能采用传递函数.,控制系统的状态空间描述,而实际上大多数系统表现为: 1、多输入,多输出.(抽象定义,系统具有合格性) 2、时变.(总是可找到一些参数是随时间变化的) 3、非线性.(泛指运动本身的非线性特征) 4、复杂性,复杂任务和高精度.,因此古典控制理论解决问题受到限制,需要寻找新的解决方法.这种方法或理论应要求: 1、描
2、述多输入/输出复杂系统的方法和理论基础. 2、具有可计算的形式. 3、解析式设计 4、能描述系统内部状态和终端行为(内部描述). 5、系统t=0松驰状态,非松驰状态,或非线性时变等情况下的适用性.,结论 -对研究内容的界定和限制 所以对于一个多输入/输出系统来说: 1、采用在时域内进行建模,且由于是对实际物理系统进行模型描述,因而模型中的所有变量和函数均假定为实数 x 。,2、数学描述的主要手段是微分方程,并应充分利用系统的内部描述法来建立微分方程,以充分表述系统的内部特性. 3、适用于非初始松驰或非零初始条件的系统状态. 4、主要研究线性连续时不变系统.,二.问题的引出 2 -状态空间分析方
3、法 通过一个实例引出状态空间分析方法的基本概念. 例:设有如图所示网络,显然,若流经电感的初始电流及电容两端的初始电压已知,则在任何电压驱动下,网络的行为能唯一地确定。 从u到y的网络传递函数求得为: (1) 故该网络的脉冲响应为:(1),现将输入电压u ,)施加于网络,且网络设定为时不变的. (1)若在 时刻系统是松驰的,则其输出为: (2) (2)若在 时刻非松驰( 前有输入,系统有能量储存),则系统输出为: (3),显然在 以前施加于系统的输入能通过电容和电感的能量存储对 之后的输出产生影响. 现在我们考虑由未知输入u(-, 对y ,)的影响,即 (4),其中: 注意到 和 与t无关,因
4、此如果 和 已知,则由未知的输入u(-, 引起的在t 之后的输出就完全可以确定。,由式(3)得到 并利用式(4)的结果,得 (5),对式(3)取关于t的导数,并利用,得到:连同g(0)=0,就意味着有(6)联立式(5)和式(6),得到,从而若网络在 时刻非松驰则输出由下式给出: 结论:若 和 已知( 时刻系统的一种状态),即使网络在 时刻非松驰,它在t u ,) 之后的输出也能唯一的被确定.显然是由 和 ,u ,)共同唯一地确定.,因此 和 可以作为网络的状态,同样也可用 和 作为网络的状态,而这两组数的原函数是微分方程的变量.从例子中也可以看出来,在无限区间(-, 上的输入,其作用效果已综合
5、在 , 和 , 两个数中,因此状态概念非常有意义和有效.,从上述例子可得到如下结论: 1、系统状态不是唯一的. 2、状态的选择与物理量有关,一般应该是相互 独立的储能元件的物理量. 3、每一瞬时的状态可以是仅由有限个数的集合组成.,定义1.状态 系统在时刻 的状态乃是时刻 的一种信息量,它与输入u ,)唯一地确定系统 t 时的行为。 注:系统行为指包括状态在内的系统的所有响应。 状态即指某一时刻的,可以表征系统特征或行为的数。而该数的原函数则可称为状态变量,而这种函数不但可以描述某一时刻的行为,并可在 ,)内描述行为,为此定义状态变量是:,定义2.状态变量 状态变量是确定系统状态的最小一组变量
6、,如果以最少的n个变量 可以完全描述系统的行为 (即当t 时输入和在t= 初始状态给定后,系统的状态完全可以确定),那么 是一组状态变量.,定义3.状态向量(有限个数的状态变量的集合) 如果将状态变量 作为向量x(t)的各个分量,则称x(t)为状态向量,一旦给定 时刻的状态向量, 则它与输入u ,)唯一地确定系统在t 时的状态x(t)。,定义4.状态空间 若状态向量x(t),可唯一地由 空间中一组规范正交基底(单位坐标向量)线性组合表示,则状态向量x(t)是n维状态空间( ,n)中的一个向量,所有状态向量x(t)集合组成n维的状态空间( ,n) 或定义为: 通常状态变量均为有实际意义的实数值,
7、因此状态向量的取值空间是有限维实向量空间,称为状态空间。,总结: (1)根据状态变量的定义,状态变量应选取系统中相互独立储能元件的物理量,独立储能元件的个数即为状态变量个数. (2)状态变量选取不唯一,有时选取状态变量仅为数学描述所需,而非明确的物理意义。,(3)状态变量是系统的内部变量,一般情况下输出是状态的函数,但输出总是希望可量测的。 (4)仅讨论有限个状态变量的系统。 (5)有限个数的状态变量的集合,称为状态向量。 (6)状态向量的取值空间称为状态空间。,例2,设下图的RLC网络,如果电流i( ),电容电压 ( )的初始值和t 时的输入电压均已知,则t 时网络的状态完全由i(t), (
8、t)确定.因此可将i(t)和 (t)作为这个系统的一组状态变量.,(注意:这个系统,也可将 (t)和R*i(t)选为一组状态变量) 设i(t)和 (t)作为一组状态向量,则描述系统的动力学方程:,用向量矩阵形式表示,则上述方程可表示为: (1) 若设 ,则上式可简化为:, 当输出选定后,则可以量测的输出,总是可以通过状态变量和输入的线性组合得到. y=Cx+Du (2) 此例中 D=0, ,即,由此,我们可以得出,现代控制理论或状态空间分析方法是建立在系统采用有限个一阶微分方程描述的基础上,而有限个一阶微分方程组成了向量矩阵方程,因而从本质上来说,现代控制理论的分析方法是时域分析方法.,控制系
9、统的状态空间描述-线性系统的状态空间表达式状态空间表达式是描述系统行为的数学模型,它包括输出方程和状态方程,状态方程由有限个一阶微分方程组成,而输出方程则是状态向量和输入的函数.1.状态方程x(t)是n*1维向量,A(t)是n*n维向量,B(t)是n*r维向量,u(t)是r*1维向量,(1)如果是线性定常系统,则 是常系数矩阵,则状态方程可写为:(2)如果是单输入系统,则状态方程描述了 时刻和状态 和输入 所决定的系统在 的行为.,2.输出方程输出方程是在指定输出变量情况下,(输出变量往往是选取可以量测的物理量)其输出变量与状态变量以及输入变量之间的关系. 用其中: 是m*1维向量, , 是m
10、*n维向量, , 是m*r维向量, ,3.状态空间表达式 1)线性时变系统: 2)线性时不变系统: 在通常情况下,大多数还是研究线性是不变 系统,即线性定常系统,因此本课程的主要研究对象是线性定常系统。,4.状态空间描述的结构图(或称状态变量图)例:根据上例画出结构图.解:先将例子写成下述形式,则结构图为:,画法: 1)根据状态方程从方程右边开始画起. 2)通过积分环节得到状态. 3)通过状态反馈的组合得到状态的微分 4)通过状态的组合得到输出.,5.输入/输出描述和状态变量描述的比较 (1)系统的输入/输出描述仅揭示系统在初始松驰的假定下输入输出间的关系.因此对非松驰系统不能采用这种描述.尤
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 状态 空间 课件
链接地址:https://www.31ppt.com/p-1586114.html