《火力发电厂热工过程控制系统课件.ppt》由会员分享,可在线阅读,更多相关《火力发电厂热工过程控制系统课件.ppt(120页珍藏版)》请在三一办公上搜索。
1、火力发电厂热工过程控制,什么是过程控制?,工业生产过程 指原材料经过若干加工步骤转变成产品的过程。,工业生产过程可分为: 连续生产过程 离散生产过程 间歇生产过程(批量生产过程)。,工业生产的目标 在可能获得的原料和能源条件下,以最经济的途径将原材料加工成预期的合格产品。,原材料,合格产品,理想条件,干扰,产品?,控制,过程控制,过程控制主要是指连续过程工业的过程控制,测量变送器,控制器(PID),执行器,汽包炉汽水生产过程,广义被控对象(广义过程),1生产过程(被控对象) 生产设备以及所发生的物理和化学变化的过程。 被置于控制系统中过程称为被控对象2控制系统 控制仪表和生产过程通过信号的传递
2、互相联系起来就构成控制系统。3被调量(被控制量) 表征生产过程是否正常运行并需要加以调节的物理量。,名词术语,4给定值 按生产要求被调量必须维持的希望值(简称给定值)。5调节机构 可用来改变进入控制对象的物质或能量的装置。6调节量(控制量) 由操作者或调节机构(阀门、挡板等)改变的,生产过程的输入物理量,用以控制被调量的变化。称为调节量。7扰动 引起被调量偏离平衡状态的各种原因称为扰动。,8控制过程(调节过程) 原来处于平衡状态的生产过程,一旦受到扰动作用,被调量偏离原来平衡状态,通过施加调节作用使被调量重新恢复到新的平衡状态的过程,称为控制(调节)过程。,原平衡状态,新平衡状态,控制过程(调
3、节过程),过程控制的研究内容:(1)设计控制系统的控制目标(即设计指标参数);(2)认识生产过程的动态特性(一般为广义对象的动态性);(3)设计控制器的控制规律及控制结构,使控制系统达到控制系统的控制指标要求。,第一章 生产过程动态特性,1-1 过程控制系统的性能指标1-2 被控对象的动态特性1-3 过程数学模型及其建立方法,1-1过程控制系统的性能指标,稳态,稳态,动态,控制系统的目标:当被调量受到扰动而偏离平衡状态时,控制器的控制作用能使被调量稳、准、快地回到要求平衡状态。,一、单项性能指标,y1,y3,y,ess,ts,r,单项性能指标衰减率: =超调量: =稳态误差: ess=y-r调
4、节时间: ts(进入稳态值5%范围内)振荡频率:,单项性能指标衰减率 : 反映了系统稳定性超调量 : 反映了动态准确性稳态误差ess: 反映了静态准确性调节时间ts : 反映了快速型振荡频率:反映了快速型,一般 对定值系统衰减率要求为75% 对随动系统衰减率要求为90%,二、综合指标(时间积分指标)各种积分指标:(1) IE(误差积分)= 优点:简单,也称为线性积分准则 局限:不能抑制响应等幅波动(2) IAE(绝对误差积分)= 特点:抑制响应等幅波动(3) ISE(平方误差积分)= 优点:抑制响应等幅波动和大误差局限:不能反映微小误差对系统的影响(4) ITAE(时间与绝对误差乘积积分) =
5、优点:着重惩罚过度时间过长,三、小结1 单项指标用若干特征参数评价系统优劣;2 积分指标用误差积分综合评价系统优劣;3 根据具体生产过程的实际选用不同的指标;4 通常将衰减率和积分指标结合,首先满足衰减率。,1-2被控对象的动态特性一、基本概念 被控对象的动态特性是指被控对象的输入发生变化时,其输出(被调量)随时间变化的特性 。 对于线性系统,其动态特性可用传递函数来描述。二、典型对象动态特性1. 典型实例分析,有自平衡单容对象,(1)单容水箱,物质平衡方程:,在工作点线性化处理:,传递函数:,阶越响应:,有自平衡双容对象,(2)双容水箱,对物质平衡方程在工作点处进行线性化处理后达到传递函数为
6、:,阶越响应:,(3)带延长管的单容水箱,传递函数为:,阶越响应:,有迟延自衡单容对象,三、工业过程动态特性的特点(1)无振荡;(2)稳定或中性稳定;(3)有惯性或迟延;(4)非线性特征,大部分生产过程可在工作点附近线性化,自衡过程,非自衡过程,(1)典型自衡对象传递函数表达式,(2)典型非自衡对象传递函数表达式,归纳:,一、过程数学模型的表达形式与对模型的要求二、建立数学模型的两个基本方法机理建模法测试建模法三、阶跃响应确定传递函数1 阶跃响应获取应注意的问题2 确定自衡对象传递函数3 确定非自衡对象传递函数,1-3 过程数学模型及其建立方法,阶跃响应获取应注意的问题,(1)合理选择阶跃扰动
7、的幅度(一般约为额定负荷的10%20%)(2)实际阀门只能以有限速度移动一般认为阶跃信号是在t1 /2时加入(3)试验前确保被控对象处于稳定工况考虑过程的非线性特性,应进行多次测试。(4)若过程不允许同一方向扰动加入,则采用矩形脉冲扰动可从脉冲响应曲线求出所需的阶跃响应。,2 确定自衡对象传递函数,典型自衡过程: (1)一阶惯性环节,(3)用有理分式表示的传递函数,选择哪种传递函数的形式,可依据以下两点:对被控对象的验前知识的掌握对建立数学模型准确性的要求,(2)二阶或n阶惯性环节,(1)确定,参数,的作图法,t1/2处为扰动起点; 在s型响应曲线找拐点,并作切线; 记交点a、b和c,a,b,
8、起点到a的距离为; a点到c点的距离为T;,c,(2)确定,参数的两点法,将响应曲线标幺,取y*(t1)=0.39,取y*(t2)=0.63,记t1和t2,取,验证,(3)确定,参数的两点方法,将响应曲线标幺并去掉纯迟延的到y*(t),取y*(t1)=0.4,取y*(t2)=0.8,记t1和t2,若0.32t1/t20.46 ,则为二阶对象,若t1/t20.46 ,则为高阶对象见表1-1(p.28),3由阶跃响应确定非自衡过程近似传递函数,一阶积分环节的多容过程,非自衡过程传递函数为:,一阶积分环节的纯迟延过程,*当对象的阶数n6时,一般多容过程传递函数描述,(1)一阶积分的多容过程,作渐近线
9、,记ta、oh、y(ta) y(ta )/oh与n为单值关系,n 、 Ta 、 T参数的确定:n由y(ta )/0h的值经查表确定;Tta /n;,(2)有迟延的一阶积分对象,需要确定两个参数(T和)。 = ta 。,第二章 比例积分微分控制及其调节过程,2-1 基本概念2-2 比例调节2-3 积分调节2-4 比例积分调节2-5 比例积分微分调节,2-1 基本概念,控制器,统计表明生产过程80%的控制可以用PID控制器构成单回路反馈控制系统进行控制(简单控制系统)。,PID控制是比例积分微分控制的简称。 是一种负反馈控制。即控制器与广义被控对象构成的系统为闭环负反馈系统。其作用是对输入偏差进行
10、调节,从而缓解系统的不平衡,使系统输出稳定。,控制器包括求偏差和PID运算,1典型的传递函数为:,实际PID,理想PID,其中:KC:比例系数TI:积分时间TD:微分时间KD:微分增益,2PID调节的优点原理简单(适用和实现方便)鲁棒性强(对过程参数变化不敏感)3调节器偏差的定义按仪表制造业的规定:,调节器偏差=测量值-给定值,即,工业调节器的基本构成,设置正反作用开关的目的:使控制系统构成闭环负反馈系统,2-2 比例调节,比例调节规律( P),KC为比例增益,为比例带。,的物理意义:使调节阀开度改变100%(即从全关到全开)所需要的被调量的变化范围。,u0是偏差e=0时的调节器输出初始值。,
11、*比例作用的线性关系只在一定范围其作用,2.调节过程:,3.比例调节的特点,调节作用及时。 KC 调节动作大,调节作用增强,有效抑制最大动态偏差。,调节误差,自衡对象:,非自衡对象:,4.KC变化对系统控制性能指标的影响,KC,衰减率 稳态误差ess振荡频率 ,1.积分调节规律(I),2-3 积分调节,,,TI为积分时间,S0为积分速度,l1,l2,p,自力式气压调节阀,R,W,2.调节过程:,3.积分调节的特点,调节作用不及时。调节作用主要表现在动态过程的后期,因此动态偏差大。TI 调节作用增强;积分作用使系统稳定性变差;无差调节;浮动调节调节阀开度与当时的被调量的数值本身没有直接关系 。,
12、4.TI变化对系统控制性能指标的影响,TIS0,衰减率 稳态误差ess=0振荡频率 ,5.I与P调节比较,在相同的稳定裕度下积分调节,振荡频率低,调节过程加长。,静态:I调节优于P调节,动态:P调节优于I调节,结论:工业上不单独使用积分调节作用。,2-4 比例积分调节,1.比例积分调节规律(PI),3 比例积分调节的特点,无差调节(吸收了积分规律的优点)调节及时 ,抑制动态偏差(吸收了比例规律的优点)浮动调节,4. 对系统控制性能指标的影响,(KC不变) TI ,衰减率 稳态误差ess=0振荡频率 ,(TI不变) KC,衰减率 稳态误差ess振荡频率 ,5.与P调节比较,在P调节的基础上加入积
13、分,将使系统的稳定性下降,为保持控制系统原来的衰减率,PI调节器比例带必须适当加大,,6.积分饱和现象,在有积分作用的调节器系统中,若用于某种原因(如阀门),被调量偏差一时无法消除,然而调节器还是要试图校正这个偏差,结果经过一段时间后,调节器将进入饱和状态,这种现象称为积分饱和。这种现象将导致调节滞后,对控制系统的稳定、以及达到预期的控制目标将产生不利的影响。,2-5 比例积分微分调节,1.微分调节(D),微分调节是仅根据偏差的变化速度来产生控制信号,偏差不变则没有控制输出。因此微分调节不单独使用,2.比例微分调节(PD),单位阶跃响应,3.比例微分调节特点,相同衰减率下,TD微分调节作用增强
14、;有差调节,稳态误差与比例调节;超前调节,适当的微分可以减小超调量,也能减少振荡倾向一样。,4.比例积分微分调节(PID),相同衰减率下,各调节规律比较,PID的调节效果最好(从超调量、过度过程时间、稳态误差),PI其次,PD次之(有差),P再次之,I调节最差,虽然PID的调节效果最好,并不意味着所有的系统都是合理的,因为它有三个参数要整定,如果整定不合适,则可能导致系统不稳定,适得其反。使用何种调节规律一般可按: 先比例 ,再积分,然后才把微分加,*对象时间常数大或迟延时间长,应引入D作用,若系统允许有残差,则可选PD调节;系统要求无差,则选PID规律。*对象的时间常数较小,受扰动影响不大,
15、系统要求无差,则使用PI调节。(如锅炉水位控制等)*对象的时间常数较小,受扰动影响不大,系统不要求无差,则使用P调节。(如锅炉高加水位控制等),*对象时间常数或迟延时间很长,受扰动影响也很大,简单控制系统已不能满足要求,应设计复杂控制系统。(如汽温控制系统)若广义对象的传递函数可近视表示为典型的自衡过程,,选择P或PI调节,,选择PD或PID调节,,用复杂控制。,第三章 简单控制系统的整定,3-1 控制系统整定的基本要求,控制系统的任务是指在控制系统的结构已经确定、控制设备与控制对象等都处在正常状态的情况下,通过调整调节器的参数(、TI、TD),使其与被控对象特性相匹配,以达到最佳的控制效果。
16、,1. 参数整定 调整调节器参数的过程称为参数整定。当调节器的参数被整定到使控制系统达到最佳控制效果时,称为最佳整定参数。 2.参数整定的依据性能指标1)单项性能指标:衰减率、超调量、过渡过程时间。 =0.75适应于大部分允许有一些超调的工业过程。 =1适用于被控对象的惯性较大,且不允许有过调的控制系统。2)误差积分指标:IE、IAE、ISE、ITAE。 在实际系统整定过程中,常将两种指标综合起来使用。 一般先改变某些调节器参数(如比例带)使系统获得规定的衰减率,然后再改变另外的参数使系统满足积分指标。经过多次反复调整,使系统在规定的衰减率下使选定的某一误差指标最小,从而获得调节器的最佳整定参
17、数。,3.调节器参数整定的方法1)理论计算整定法:(根轨迹法、频率特性法)基于数学模型通过计算直接求得调节器的整定参数,整定过程复杂,且往往由于被控对象是近似的,故所求得的整定参数不可靠。2)工程整定法:临界比例带法、衰减曲线法、图表整定法。这写方法通过并不复杂的实验,便能迅速获得调节器的近似最佳整定参数,因而在工程种得到广泛的应用。,3-2 衰减频率特性法定性分析,从控制理论得知,,,称为系统相对稳定度,1.衰减频率特性和稳定度判据,将s的值带入系统开环传递函数,得到系统的开环衰减频率特性,对应的推广乃氏稳定性判据稳定度判据为:,在复平面AOB折线右侧有p个极点,那么当频率从,时,逆时针包围
18、(-1,j0)的圈数为p,,则闭环系统衰减率满足规定要求,若,当频率从,,折线AOB上的任一点可表示为,1.衰减频率特性法整定调节器参数,设满足,的特征方程为,即:,求得以上满足幅值条件和相位条件的所组成的方程组便可得到调节器的整定参数及振荡频率。,1)单参数调节器的参数整定,求解方程组:,比例调节器: GC(ms,j)=KC,结论:比例调节器唯一整定参数,2)双参数调节器的参数整定,(1)PI调节,由频率特性方程组,,因此得到的解是多组解,解三个变量,(2)PD调节,由频率特性方程组,,因此得到的解是多组解,解三个变量,PI调节,PD调节,综上分析可看到,用这种理论的整定方法整定调节器参数,
19、当调节器的参数超过一个时,整定是非常麻烦的,计算量很大实用价值不高。但它可建立调节器整定参数与被控对象动态特性参数之间的关系,为工程整定的经验公式提供理论依据。,3-3 工程整定方法,1.动态特性参数法(离线整定、开环整定),自衡对象:,非自衡对象:,齐勒格(Ziegler)-尼科尔斯(Nichols)整定公式(=0.75),齐勒格-尼科尔斯整定公式比较粗糙,经过不断改进,广为流传的是科恩-库恩公式(自衡对象=0.75),2.稳定边界法(临界比例带法)闭环试验法,使调节器为纯比例规律,且比例带较大;,使系统闭环,待稳定后,逐步减小比例带,当系统出现等幅震荡时,计下,查表,注意: 适于临界稳定时
20、振幅不大,周期较长(Tcr30s)的系统,对象的和T较小不适用; T较大的单容对象因采用P调节时,系统永远稳定,也不适用对于非自衡对象,所得到的调节器参数将使系统的衰减率0.75对于自衡对象,所得到的调节器参数将使系统的衰减率0.75对于某些中性稳定对象,不能使用此法,3.衰减曲线法 闭环试验法,使调节器为纯比例规律,且比例带较大;,使系统闭环,待稳定后,逐步减小比例带,当系统出现衰减震荡时(=0.75 ,=0.9) ,计下,查表,=0.75,=0.9,注意:对于扰动频繁而过程又较快的系统,Ts的测量不易准确,因此给参数整定带来误差。,4.经验法,先根据经验确定一组调节器参数,并将系统投入闭环
21、运行,然后人为加入阶跃扰动(通常为调节器设定值扰动),观察被调量或调节器输出曲线变化,并依照调节器各参数对调节过程的影响,改变相应的参数,一般先整定,再整定TI和TD,如此反复试验多次,直到获得满意的阶跃响应曲线为止。,经验法调节器参数经验数据,设定值扰动下整定参数对调节过程的影响,不同的整定方法按相同的衰减率整定,得到不相同参数整定值。,5. 按误差性能指标整定,对于定值系统,设计表达式:,对于随动系统,设计表达式:,设对象为:,调节器待整定参数为:,(1)若调节器的控制规律为:,基于ITAE性能指标的调节器参数整定计算表,(2)若调节器的控制规律为PID,且:,(3)若调节器的控制规律为P
22、ID,且:,(4)若调节器控制规律为PID,且:,经验整定口诀:阶跃扰动投闭环,参数整定看曲线;先投比例后积分,最后再把微分加;理想曲线两个波,振幅衰减4比1;比例太强要振荡,积分太强过程长;动差太大加微分,频率太快微分降;偏离定值回复慢,积分作用再加强。,第四章 调节阀,4-1 气动调节阀结构4-2 调节阀结构特性和流量特性,4-1 气动调节阀结构,阀门定位器,气动薄膜调节阀实物图,执行机构,阀,阀门定位器,气动薄膜调节阀结构简图,执行机构,阀,公称直径Dg,阀座直径dg,2)阀:,1)执行机构:将气压,1.各部分的作用,阀杆位移,阀杆位移,调节流量Q,3)阀门定位器:,2)阀:,1)执行机
23、构:将气压,1.各部分的作用,阀杆位移,阀杆位移,调节流量Q,3)阀门定位器:提高控制系统精度,2.执行器及阀门配合类型,1.调节阀结构特性,快开阀,直线阀,抛物线阀,等百分比阀,4-2 调节阀结构特性和流量特性,结构特性:,*调节阀全关时,仍然有约5%的流量,这是为了防止卡瑟;,线性,*实际应用中常采用等百分比阀,因为对象特性往往是非线性的.,K(Q),2 调节阀的流量特性,1)理想流量特性,在调节阀前后差压固定时,有,即理想流量特性就是阀门的结构特性,根据,2)工作流量特性,串联管系调节阀工作流量特性,全开阀阻比:,流量特性畸变,流量特性:,小结*在理想情况下,阀门流量特性就是阀门结构特性
24、。*串联在管道中的阀门流量特性发生畸变,随S100减小,调节范围减小,调节性能变差。*在设计管段时,管道中其他部件引起的差压应尽量小,这样可使流量特性发生畸变较少。,第五章 串级控制系统与比值控制系统,5-1 串级控制系统概念5-2 串级控制系统设计和实施中的几个问题5-3 调节器的选型5-4 比值控制系统,减温水扰动,减温水扰动,单回路控制系统,串级控制系统,超调量大振荡频率低调节时间长,超调量小振荡频率提高调节时间缩短,常称副对象为导前区,主对象为惰性区;,串级控制系统的特点:有效地克服二次扰动;改善了对象的动态特性;具有一定的自适应能力;,各调节器的作用:副调:粗调,克服二次扰动;主调:
25、细调,进行系统校正。,5-2 串级控制系统设计和实施中的几个问题,1. 副回路的设计,1)副调参数选择应使副回路的时间常数小; 这样通道短,反应灵敏2)副回路应包含主要的扰动; 一般应把调节量扰动包含在内,2. 主、副回路工作频率的选择,副回路的工作频率应选择主回路工作频率的310倍,3. 防止调节器积分饱和,产生积分饱和的原因:,外因是偏差长期存在内因是控制器有积分作用,串级控制系统当主、副调节器都采用PI调节时,很容易产生积分饱和现象。,主调节器产生积分饱和,将使控制不及时,系统输出超调量增加。,系统正常时,R2(s)=Y2(s)。则主调节器输出为:,将主调节器调整为积分外反馈。即,常规P
26、I调节,当R2(s)Y2(s)时,则主调节器输出为:,比例调节(无积分),偏置,抗积分饱和措施:,5-3 调节器的选型和整定,1. 选型,1) 副调节器一般选P调节,若主、副环频率相差很大,也可选PI。2) 主调节器一般选PI调节,若主回路有主要扰动也可选PID。,2. 参数整定,1)断开主回路,按单回路整定方法整定副回路,副回路整定应将比例系数调大一些,振荡频率要快一些2)闭合主回路,按单回路整定方法整定主回路,主回路整定应将比例系数调小一些,振荡频率要慢一些,主回路的振荡频率比副回路的振荡频率低310倍。,5-4 比值控制系统,定义:自动保持两个或多个参数之间的比例关系的控制系统就是比值控
27、制系统。,合成炉比值控制系统原理图,单回路流量随动系统,管道,双闭环比值控制系统,如锅炉燃烧控制系统中的风、煤控制,第六章利用补偿原理提高系统的控制品质6-1 概述6-2 前馈控制系统6-3 大迟延系统,6-1 概述,反馈控制原理:按尝试法根据偏差进行控制,有偏差才控制不能事先规定调节器的输出,反馈控制的缺点:,设计控制器Gff(s),使,Gff(s) Kv Gp(s)+ Gd (s)=0。,则扰动D的变化与输出Y无关。,前馈控制器,6-2 前馈控制系统,定义:基于不变性原理的控制系统称为前馈控制系统。是一种按扰动进行补偿的开环控制系统,1 静态前馈,定义:保证在系统稳态下补偿扰动作用的前馈称
28、为静态前馈。即基于稳态不变性原理,静态前馈控制器参数整定:,1) 根据已知开环传函计算:,2) 试验法计算(构成PI反馈控制回路),3 动态前馈,若,静态前馈kff,动态前馈Gff(s),若 p= d ,则,若Tp=Td,若TpTd,若TpTd,为超前补偿特性,为滞后补偿特性,为比例环节,一般对象的纯迟延并不明显,因此动态前馈常采用,动态前馈参数的整定:,若调节通道响应快于扰动通道, 取T1=0.5T2,T2=1.5tp若扰动通道响应快于调节通道, 取T1=2T2 ,T2=0.7tp然后再根据补偿效果细调T1和T2,按右图做D阶跃扰动,获得Y的响应曲线,扰动输出yd,动态前馈产生的面积,动态前
29、馈要补偿的面积,tp,在工程实际中前馈控制补偿器选用原则: 首先选择静态前馈,静态前馈整定好后,再添加动态前馈。若静态前馈补偿效果达到要求,无须加入动态前馈,4 前馈反馈控制,将前馈、反馈控制结合可优势互补,扬长避短,选用前馈反馈控制的原则 (1)若控制系统中控制通道的惯性和迟延较大,反馈控制达不到良好的控制效果时,可引入前馈控制。 (2)如果系统中存在着经常变动、可测而不可控的扰动时,反馈控制难以克服扰动对被调量的影响,这时可引入前馈控制以改善控制品质。,6-3 大迟延系统,大迟延对象:/T0.3控制难度:超调量大,调节时间长,1. 简单解决办法:,2. 史密斯预估控制,史密斯预估控制原理图,史密斯预估控制原理通过加补偿器使被延迟的被调量超前反映。即:,整理得史密斯预估器为:,由梅逊公式得到系统闭环传递函数,系统特征方程不纯含迟延项,因此消除了纯迟延对系统控制品质的影响。,史密斯控制框图,史密斯预估控制虽然对定值扰动有很好的控制效果,然而对其他扰动控制效果变差,而且当预估器模型不准确时,控制效果也变差。,史密斯预估器的几种改进方案,实现完全抗干扰的史密斯补偿器,方案一,经推导,可使系统完全不受扰动D的影响。,显然只要取,方案二,增益自适应补偿方案,当模型匹配时可简化为,当模型失配时可近似为,反馈增益随模型失配情况变化,
链接地址:https://www.31ppt.com/p-1582324.html