生物化学与分子生物学(全套ppt课件).ppt
《生物化学与分子生物学(全套ppt课件).ppt》由会员分享,可在线阅读,更多相关《生物化学与分子生物学(全套ppt课件).ppt(127页珍藏版)》请在三一办公上搜索。
1、生物化学与分子生物学,一生物化学与分子生物学的定义, 生物化学是用化学的理论和方法研究生命现象的科学。分子生物学是研究生物大分子结构和功能的学科。生物化学与分子生物学是同一个二级学科,在大学本科阶段可以作为两门课开设, 也可以作为一门课开设.,绪论,二生物化学与分子生物学的研究范畴,(一)生物体的组成物质复杂性组成物质多;分子大;空间结构复杂。规律性元素构件小分子聚合物(生物大分子);结构与功能相适应。,(二)物质和能量代谢,复杂性多步化学反应构成代谢途径;多条代谢途径相互交织成网;物质代谢和能量代谢相互交织;调节控制有条不紊。,规律性反应类型不多;反应机理符合有机化学理论;调节控制与生物学功
2、能相适应。,(三)信息分子的生物合成,复杂性合成过程复杂;调节控制复杂;与生命现象的关系复杂。,规律性遗传密码已经破译;基因表达的基本过程已经清楚;生物大分子结构与功能的关系逐渐明晰;研究方法日新月异。,三.生物化学与分子生物学同生产实践的关系,启蒙阶段食品选择和加工;医疗。发展阶段维生素、抗生素医疗;代谢食品、医疗;分子生物学 基因工程、蛋白质工程。,发展前景生物制品;转基因动植物;基因芯片;基因诊断;基因治疗。,四.生物化学的发展史,1.炼金术阶段: 现代化学起源于炼金术(alchemy)。换言之,炼金活动是化学的前史。“ chemistry” 一词也来自alchemy, 而alchemy
3、 = al (the) + chem, 其中的chem来自中国的“ 金” 的古汉语发音。炼金术在各个古代文明中都占重要位置, 并不是中国特有, 一般而言都是如何将铜, 铅, 锡变成金、银这样的贵金属的实用学问。在西方, 炼金术从公元前几百年开始到17世纪为止, 延续了2000年;在中国也生存了差不多同样长的时间。中国的炼金术除了得到贵金属以外,还致力于研制长生不老之药“ 金丹”。因此, 中国的炼金术的化学成份比其他古代文明要浓。 中国的炼金术随丝绸之路传到了阿拉伯文化圈, 所以有了alchemy这个行业。 西腊文明在欧州历史上曾一度失传, 幸好阿拉伯人继承了其精华(714世纪), 1113世纪
4、十字军的侵略将散落在阿拉伯文化中的希腊文化又带回了欧洲, 也顺便将中国的炼金术带进入了西方文明。此后,西方的炼金术活动朝着独自的方向发展,特别是对酸, 碱, 盐等物质的化学性质有了相当的知识积累。,2.从炼金术到化学: 17世纪兴起的文艺复兴活动使alchemy真正向现代的chemistry过渡。 当时的化学家, 要么是贵族, 要么是业余爱好。在与英国的Newton同时期的贵族Robert Boyle (1627-1691) 对气体和真空进行了研究, 写了“ The Sceptical Chymist (1661)” 一书, 主张决别带有神秘色彩的炼金术, 而以理性思考的态度来研究化学。他发现
5、了波以尔法则 PV=Const, 实际上就是现代物理化学的起点。1662英国设立了 Royal Society, 1666年 Paris Academia 分别设立, 为科学研究和交流提供了土壤。这是化学与炼金术决别的标志。 随后,空气中含有不同成分1764年CO2 (Black), 1766年H2 (Canvendish), 1772年O2 (Sheele), 1772年N2 (Ratherford) , 1774年Cl2 (Sheele), 相继被发现。1774年Lavoisier确立了物质不灭定理, 1777年确立了燃烧理论。此后的化学反应的定比例法则 (Joseph Louis Pro
6、ust, 1799) 及化学元素分析方法的发展, 为有机化学的出现奠定了基础。,3.有机化学的发展 简单的说, 有机化学就是H, C, N, O的化学。 其发展是必然的, 因为人对生命物质的兴趣要比对非生命物质更浓。化学分析的手段发展后, 势必要用来研究有机的物质。通过有机化学研究知道的物质结构, 成为生物化学研究的起点。 有机化学的发展, 是从尿素的合成开始的。 1828年 Wohler (德) 从无机盐合成了尿素 1831年 Liebig (德) 有机物元素分析定量法的发明 1840年 有机基团 (group) 的概念的形成 1848年 Pasteur (法) 酒石酸的光学异构体的发 18
7、58年 Kekule (德) C原子的四价理论 1865年 Kekule (德) Benzen环结构的发现 1869年 元素周期表的确立 1874年 vant Hoff (荷) C4的正四面体结构 1884年 Fischer (德) 糖的化学结构研究的开始,4.生物化学重大发展年代表,1897年 Buchner 发现酵母细胞质能使糖发酵1902年 Fischer 肽键理论1926年 Sumner结晶得到了脲酶,证明酶就是蛋白质1935年 Schneider将同位素应用于代谢的研究 1944年 Avery等人证明遗传信息在核酸上 1953年 Sanger的胰岛素氨基酸序列测定 Waston-Cl
8、ick提出DNA 双螺旋模型 1958年 Perutz等解明肌红蛋白的立体结构 1970年 发现了DNA限制性内切酶 1972年 DNA重组技术的建立 1978年 DNA双脱氧测序法的成功 1990年 人类基因组计划的实施,2003年完成,进入 后基因组时代,生物化学中的关键技术,电泳(1923) 生物大分子的分离、分析超离心(1925)蛋白质、细胞亚器官的 分离;分子量的确定同位素标记(1934)物质代谢途径、生物大分子结构测定层析(1944 ) 生物大分子的分离纯化X-光衍射、NMR:生物大分子结构测定,五生物化学与分子生物学 同有关学科的关系,生物化学与分子生物学是生物学的最深层次;生物
9、化学与分子生物学是化学的最高层次;生物化学与分子生物学为农学、医学和食品科学提供理论依据和研究手段;物理学、信息科学和数学为生物化学与分子生物学提供研究手段。,课外阅读书籍,Lehninger :Principles of Biochemistry Stryer:Biochemistry 王镜岩生物化学 沈仁权生物化学教程 郑集普通生物化学 Garrett,and Grisham: Biochemistry (影印版) 罗纪盛等 生物化学简明教程 朱玉贤 李毅 现代分子生物学 Robert F.Weaver: Molecular biology (影印版),六学习方法,积极培养学习的兴趣;记忆
10、与理解相互促进;注重阅读和练习;注重学习科学思维的方法和实验技能;注重与数理化特别是化学知识的联系;注重与生物学功能的联系。,蛋白质的结构与功能,第一章,Structure and Function of Protein,什么是蛋白质?,蛋白质(protein)是由许多氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物。,蛋白质研究的历史,1833年,Payen和Persoz分离出淀粉酶。1838年,荷兰科学家 G. J. Mulder引入“protein”(源自希腊字proteios,意为primary)一词 1864年,Hoppe-Seyler从
11、血液分离出血红蛋白,并将其制成结晶。19世纪末,Fischer证明蛋白质是由氨基酸组成的,并将氨基酸合成了多种短肽 。,1951年, Pauling采用X(射)线晶体衍射发现了蛋白质的二级结构-螺旋(-helix)。 1953年,Frederick Sanger完成胰岛素一级序列测定。 1962年,John Kendrew和Max Perutz确定了血红蛋白的四级结构。20世纪90年代以后,随着人类基因组计划实施,功能基因组与蛋白质组计划的展开 ,使蛋白质结构与功能的研究达到新的高峰 。,蛋白质的分子组成The Molecular Component of Protein,第一节,蛋白质的生物
12、学重要性,分布广:所有器官、组织都含有蛋白质;细胞的各个部分都含有蛋白质。含量高:蛋白质是生物体中含量最丰富的生物大分子,约占人体固体成分的45%,而在细胞中可达细胞干重的70%以上。,1. 蛋白质是生物体重要组成成分,作为生物催化剂(酶)代谢调节作用免疫保护作用物质的转运和存储运动与支持作用参与细胞间信息传递,2. 蛋白质具有重要的生物学功能,3. 氧化供能,组成蛋白质的元素,主要有C、H、O、N和 S。 有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘 。,各种蛋白质的含氮量很接近,平均为16。,由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可
13、以根据以下公式推算出蛋白质的大致含量:,100克样品中蛋白质的含量 (g %)= 每克样品含氮克数 6.25100,1/16%,蛋白质元素组成的特点,一、组成人体蛋白质的20种L-氨基酸,存在自然界中的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属 L-氨基酸(甘氨酸除外)。,C,+,N,H,3,C,O,O,-,H,除了20种基本的氨基酸外,近年发现硒代半胱氨酸在某些情况下也可用于合成蛋白质。硒代半胱氨酸从结构上来看,硒原子替代了半胱氨酸分子中的硫原子。硒代半胱氨酸存在于少数天然蛋白质中,包括过氧化物酶和电子传递链中的还原酶等。硒代半胱氨酸参与蛋白质合成时,并不是由目前已知的密
14、码子编码,具体机制尚不完全清楚。,体内也存在若干不参与蛋白质合成但具有重要生理作用的L-氨基酸,如参与合成尿素的鸟氨酸(ornithine)、瓜氨酸(citrulline)和精氨酸代琥珀酸(argininosuccinate)。,非极性脂肪族氨基酸极性中性氨基酸芳香族氨基酸酸性氨基酸碱性氨基酸,二、氨基酸可根据侧链结构和理化性质进行分类,(一)侧链含烃链的氨基酸属于非极性脂肪族氨基酸,(二)侧链有极性但不带电荷的氨基酸是极性中性氨基酸,甲硫氨酸,(三)侧链含芳香基团的氨基酸是芳香族氨基酸,(四)侧链含负性解离基团的氨基酸是酸性氨基酸,(五)侧链含正性解离基团的氨基酸属于碱性氨基酸,几种特殊氨基
15、酸,脯氨酸(亚氨基酸), 半胱氨酸,胱氨酸,在蛋白质翻译后的修饰过程中,脯氨酸和赖氨酸可分别被羟化为羟脯氨酸和羟赖氨酸。蛋白质分子中20种氨基酸残基的某些基团还可被甲基化、甲酰化、乙酰化、异戊二烯化和磷酸化等。这些翻译后修饰,可改变蛋白质的溶解度、稳定性、亚细胞定位和与其他细胞蛋白质相互作用的性质等,体现了蛋白质生物多样性的一个方面。,三、20种氨基酸具有共同或特异的理化性质,两性解离及等电点,氨基酸是两性电解质,其解离程度取决于所处溶液的酸碱度。,等电点(isoelectric point, pI) 在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时
16、溶液的pH值称为该氨基酸的等电点。,(一)氨基酸具有两性解离的性质,pH=pI,pHpI,pHpI,氨基酸的兼性离子,阳离子,阴离子,(二)含共轭双键的氨基酸具有紫外吸收性质,色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。,大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。,芳香族氨基酸的紫外吸收,(三)氨基酸与茚三酮反应生成蓝紫色化合物,氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法。,四、氨基酸通过肽键连接而形成蛋白质或活性肽,
17、肽键(peptide bond)是由一个氨基酸的-羧基与另一个氨基酸的-氨基脱水缩合而形成的化学键。,(一)氨基酸通过肽键连接而形成肽,+,甘氨酰甘氨酸,肽键,肽(peptide)是由氨基酸通过肽键缩合而形成的化合物。,两分子氨基酸缩合形成二肽,三分子氨基酸缩合则形成三肽,肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基(residue)。,由十个以内氨基酸相连而成的肽称为寡肽(oligopeptide),由更多的氨基酸相连形成的肽称多肽(polypeptide)。,N 末端:多肽链中有游离-氨基的一端C 末端:多肽链中有游离-羧基的一端,多肽链有两端:,多肽链(polypeptid
18、e chain)是指许多氨基酸之间以肽键连接而成的一种结构。,N末端,C末端,牛核糖核酸酶,蛋白质是由许多氨基酸残基组成、折叠成特定的空间结构、并具有特定生物学功能的多肽。一般而论,蛋白质的氨基酸残基数通常在50个以上,50个氨基酸残基以下则仍称为多肽。,(二)体内存在多种重要的生物活性肽,1. 谷胱甘肽(glutathione, GSH),GSH过氧化物酶,GSH还原酶,NADPH+H+,NADP+,GSH与GSSG间的转换,体内许多激素属寡肽或多肽,神经肽(neuropeptide),2.多肽类激素及神经肽,蛋白质的分子结构The Molecular Structure of Protei
19、n,第二节,蛋白质的分子结构包括:,一级结构(primary structure)二级结构(secondary structure)三级结构(tertiary structure)四级结构(quaternary structure),定义:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。,一、氨基酸的排列顺序决定蛋白质的一级结构,主要的化学键:肽键,有些蛋白质还包括二硫键。,一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。,目前已知一级结构的蛋白质数量已相当可观,并且还以更快的速度增加。国际互联网有若干重要的蛋白质数据库,例如EMBL(Eur
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物化学 分子生物学 全套 ppt 课件

链接地址:https://www.31ppt.com/p-1576936.html