S71200第26讲S71200的PID控制器课件.pptx
《S71200第26讲S71200的PID控制器课件.pptx》由会员分享,可在线阅读,更多相关《S71200第26讲S71200的PID控制器课件.pptx(44页珍藏版)》请在三一办公上搜索。
1、博途1200课程-第26讲,-S7-1200的PID控制器2,模拟量闭环控制系统变送器的选择 变送器分为电流输出型和电压输出型。 电压输出型变送器具有恒压源特性,输入阻抗很高。如果变送器距离PLC较远,通过线路间的分布电容和分布电感产生的干扰信号电流,在模块的输入阻抗上将产生较高的干扰电压。例如1mA干扰电流在10MW输入阻抗上将产生10V的干扰电压信号,所以远处传送模拟量电压信号时抗干扰能力很差。 电流输出型变送器具有恒流源的性质,内阻很大,输入阻抗较小(例如250 W)。线路上的干扰信号在模块的输入端阻抗上产生的干扰电压很低,所以模拟量电流信号适合于远程传送。,电压 0-10V 电流 0(
2、4)-20mA 选择依据 工业上通常用电压 05(10)V 或电流 0(4)20mA 作为模拟信号传输的方法,也是被程控机经常采用的一种方法。那么电压和电流的传输方式有什么不同,什么时候采用什么方法,下面将对此进行简要介绍。 电压信号传输比如 05(10)V如果一个模拟电压信号从发送点通过长的电缆传输到接收点,那么信号可能很容易失真。原因是电压信号经过发送电路的输出阻抗,电缆的电阻以及接触电阻形成了电压降损失。由此造成的传输误差就是接收电路的输入偏置电流乘以上述各个电阻的和。,如果信号接收电路的输入阻抗是高阻的,那么由上述的电阻引起的传输误差就足够小,这些电阻也就可以忽略不计。要求不增加信号发
3、送方的费用又要所提及的电阻可忽略,就要求信号接收电路有一个高的输入阻抗。如果用运算放大器 OP 来做接收方的输入放大器,就要考虑到此类放大器的输入阻抗通常是小于 1M? 。 原则上,高阻抗的电路特别是在放大电路的输入端是很容易受到电磁干扰从而会引起很明显的误差。所以用电压信号传输就必须在传输误差和电磁干扰的影响之间寻找一个折中的方案。 电压信号传输的结论:如果电磁干扰很小或者传输电缆长度较短,一个合适的接收电路毫无疑问是可以用来传输电压信号 05(10)V 的。 电流信号传输比如 0(4).20mA在电磁干扰较强的环境和需要传输较远距离的情况下,多年来人们比较喜欢使用标准的电流来传输信号。如果
4、一个电流源作为发送电路,它提供的电流信号始终是所希望的电流而与电缆的电阻以及接触电阻无关。也就是说,电流信号的传输是不受硬件设备配置的影响的。同电压信号传输的方法正相反,由于接收电路低的输入阻抗和对地悬浮的电流源(电流源的实际输出阻抗与接收电路的输入阻抗形成并联回路)使得电磁干扰对电流信号的传输不会产生大的影响。 电流信号传输的结论:如果考虑到有电磁干扰比如电焊设备和其他信号发射设备,传输距离又必须很长,那么电流信号传输的方法是适合这种情况的(模拟信号传输)。实际上经常采用的电流传输方法有二线制和三线制方法。在这里将主要论述二线制方法,也叫电流回路方法。,电流回路的综合特性 简单的使用:如果信
5、号发送电路和相联接的其他电路的工作电流保持常数不变,那么该工作电流和信号电流就可以通过同一根电缆来传输。人们只需用一个负载取样电阻,而电流在负载电阻上的电压降就可以作为有用的信号。当然还应该注意工作电压要足够高,以满足电流回路里所需要的电压降。 低廉的成本:与数字信号传输需要一个 AD 转换,一个单片机和一个合适的驱动电路相比,用简单的电流回路方法,人们只需要一条电缆,一个负载电阻和一个测量电压表。特别当对测量精度要求高的时候,二者产品成本的差别就更加明显了。 错误诊断:4-20mA 电流信号传输的优点除了传输距离远和抗干扰能力强外,还会自动提供出错信息。在一个经过校准的系统输出零信号时(输出
6、端为电流 4mA),如果接收到的信号大于零毫安而小于 4 毫安时,就说明此时系统一定有问题。如果接收到的电流信号为零,那么一定是电缆断了或者信号接收方面出了问题。如果电流信号超过 20mA 就意味着输入端方面的信号过载或者信号接收方面有问题。 长距离传输:传输距离与发送信号端的驱动能力和电缆的电阻以及接收端的测量电阻(负载电阻)有关。如果在信号传输的电缆中也要安装测量仪表,那么负载电阻还应该考虑到测量仪表的输入阻抗和监测记录仪表的输入阻抗。这些仪表常常因为成本低廉和无需外加电源而与集成电路一样共同连接在电流回路中并从4mA 中直接获得工作电源。因此在电路设计时要考虑到电流源回路的带载能力。,P
7、ID控制: 当今的闭环自动控制技术都是基于反馈的概念以减少不确定性。反馈理论的要素包括三个部分:测量、比较和执行。测量关键的是被控变量的实际值,与期望值相比较,用这个偏差来纠正系统的响应,执行调节控制。在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。 PID控制器(比例-积分-微分控制器)是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。PID控制的基础是比例控制;积分控制可消除稳态误差,但可能增加超调;微分控制可加快大惯性系统响应速度以及减弱超调趋势。 PID控制器传递函数:G(s)=U(s)/E(s)=kp
8、1+1/(TI*s)+TD*s 其中kp为比例系数;TI为积分时间常数;TD为微分时间常数。,开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输入没有影响。在这种控制系统中,不依赖将被控量返送回来以形成任何闭环回路。 闭环控制系统(closed-loop control system)是指被控对象的输出(被控制量)会反送回来影响控制器的输入,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值 信号相反,则称为负反馈(Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系
9、统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈 的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系 统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。,比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动 控制系统,如果在进入稳态后存在稳态误差,
10、则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误 差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减 小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正 比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差 的作用,其变化总是落后于误差的变化。
11、解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中 仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制 器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改 善系统在调节过程中的动态特性。,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。1比例控制 有经验的操作人员
12、手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误 差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大于给定值时,误差为负,在位置L的基础上
13、反时针减小电位器的转角,并令转角与 位置L的差值与误差成正比。上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。 比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。
14、 增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。 单纯的比例控制很难保证调节得恰到好处,完全消除误差。,2积分控制 PID控制器中的积分对应于图1中误差曲线 与坐标轴包围的面积(图中的灰色部分)。PID控制程序是周期性执行的,执行的周期称为采样周期。计算机的程序用图1中各矩形面积之和来近似精确的积分,图中的TS就是采样周期。 每次PID运算时,在原来的积分值的基础上,增加一个与当前的误差值ev(n)成正比的微小部分。误差为负值时,积分的增量为负。 手动调节温度时,积分
15、控制相当于根据当时的误差值,周期性地微调电位器的角度,每次调节的角度增量值与当时的误差值成正比。温度低于设定值时误差为正,积 分项增大,使加热电流逐渐增大,反之积分项减小。因此只要误差不为零,控制器的输出就会因为积分作用而不断变化。积分调节的“大方向”是正确的,积分项有 减小误差的作用。一直要到系统处于稳定状态,这时误差恒为零,比例部分和微分部分均为零,积分部分才不再变化,并且刚好等于稳态时需要的控制器的输出值, 对应于上述温度控制系统中电位器转角的位置L。因此积分部分的作用是消除稳态误差,提高控制精度,积分作用一般是必须的。 PID控制器输出中的积分部分与误差的积分成正比。因为积分时间TI在
16、积分项的分母中,TI越小,积分项变化的速度越快,积分作用越强。,图1 积分运算示意图,3PI控制 控制器输出中的积分项与当前的误差值和过去历次误差值的累加值成正比,因此积分作用本身具有严重的滞后特性,对系统的稳定性不利。如果积分项的系数设置得 不好,其负面作用很难通过积分作用本身迅速地修正。而比例项没有延迟,只要误差一出现,比例部分就会立即起作用。因此积分作用很少单独使用,它一般与比例 和微分联合使用,组成PI或PID控制器。 PI和PID控制器既克服了单纯的比例调节有稳态误差的缺点,又避免了单纯的积分调节响应慢、动态性能不好的缺点,因此被广泛使用。 如果控制器有积分作用(例如采用PI或PID
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- S71200 26 PID 控制器 课件
链接地址:https://www.31ppt.com/p-1566092.html