大数据在教育领域应用课件.ppt
《大数据在教育领域应用课件.ppt》由会员分享,可在线阅读,更多相关《大数据在教育领域应用课件.ppt(23页珍藏版)》请在三一办公上搜索。
1、大数据在教育领域的应用,1,大数据在教育领域中的应用,大数据在教育领域中的应用,主要指的是在线决策、学习分析、数据挖掘三大要素,其主要作用是进行预测分析、行为分析、学业分析等的应用和研究,大数据含义指的是对学生学习过程中产生的大量数据(数据来源包括两方面,即显性行为和隐性行为,其中隐性行为包括论坛发帖、课外活动、在线社交等不直接作为教育评价的活动,显性行为包括考试成绩、作业完成状况以及课堂表现等)进行分析,大数据模型以及显示的数据能够为学校和教师的教学提供参考,及时、准确的评估学生的学业状况,发现学生潜在存在的问题,进而预测学生未来可能的表现。,2,国外教育大数据公司介绍,当IBM刚刚开始与这
2、一学区合作时,除了学生成绩不好之外,该县还面临着辍学率已增加到48%的严峻情况。根据联邦政府的不让一个孩子掉队法(No Child Lift Behind,NCLB),学生成绩糟糕的地方政府将受到惩罚。为了应对这一巨大的挑战,该县此前已经在学生数据的基础上建立了一个辍学指示工具,并将其用于全县层面的决策。但IBM认为这仍不足以改善莫白儿县窘迫的现状,需要借助IBM的技术支持重新建立大数据,进而利用大数据分析来改善学区内所有学生的整体成绩,1,IBM,“希维塔斯学习”是一家专门聚焦于运用预测性分析、机器学习从而提高学生成绩的年轻公司。该公司在高等教育领域建立起最大的跨校学习数据库。通过这些海量数
3、据,能够看到学生的分数、出勤率、辍学率和保留率的主要趋势。通过使用100多万名学生的相关记录和700万个课程记录,这家公司的软件能够让用户探测性地知道导致辍学和学习成绩表现不良的警告性信号。此外,还允许用户发现那些导致无谓消耗的特定课程,并且看出哪些资源和干预是最成功的。,2,希维塔斯学习”(Civitas Learning),推出了基于他们自己过去的学习成绩数据预测并改善其未来学习成绩的大数据服务项目。这家公司的新产品名为“学生成功系统”(Student Success System)。“渴望学习”声称加拿大和美国的1000多万名高校学生正在使用其学习管理系统技术。“渴望学习”的产品通过监控
4、学生阅读电子化的课程材料、提交电子版的作业、通过在线与同学交流、完成考试与测验,就能让其计算程序持续、系统地分析每个学生的教育数据。老师得到的不再是过去那种只展示学生分数与作业的结果,而是像阅读材料的时间长短等这样更为详细的重要信息,这样老师就能及时诊断问题的所在,提出改进的建议,并预测学生的期末考试成绩,3,渴望学习”(Desire 2 Learn),3,国外教育大数据应用案例,成功创造并发布了各自版本的利用大数据的适应性学习(adaptive learning)系统。在2012年国际消费电子展的高等教育技术峰会上,世界最大的教育出版公司培生集团(Pearson)与适应性学习领域里的先行者纽
5、顿公司共同发布了主要由培生集团开发的适应性学习产品“我的实验室/高手掌握”(MyLab/Mastering)。这款产品在将全球范围内向数百万名学生提供个性化的学习服务,向他们提供真实可信的学习数据,让学校通过这些数据提高学生的学习效果并降低教学成本。首款产品将在美国的数十万名学生中使用,包括数学、英语,以及写作等技能开发课,4,“纽顿”(Knewton),总部设在英国伦敦的培生集团和其他出版公司共同开发的“课程精灵”系统(CourseSmart),也允许教授们通过让学生使用电子教科书来跟踪他们的学业进展,并向助教们显示学生的学习参与度和学习成绩等大量的数据信息,只是这一系统尚不具备预测的功能。
6、,5,培生集团,4,学习分析关键技术与主要工具,1. 从学生方面来说,学习分析技术在了解学生学习现状之后,通过分析学生数据,找出相关问题,对学生学习过程进行优化,帮助学生培养良好学习习惯,从而达到学生自我学习的目的。2. 从教师以及管理人员方面来说,学习分析技术可以评估教学课程和相关机构,帮助同步改善学校既定考核方式,深入分析教学数据,为教师帮助学生解决实际问题指明教学不足和更优方法。3. 从研究人员方面来说,学习分析技术是一种研究学生和网络学习的有效工具。4. 从技术开发人员方面来说,学习分析技术管理系统各模块各不相同的使用频次和路径能有效指导系统界面的相关优化设计,并可以完善系统日志相关管
7、理功能。,5,数据挖掘在教育信息化中的具体应用空间,学习者特征由学习者的知识结构和学习风格组成。知识结构说明了学习者对正在或将要学习知识的掌握情况,主要包括学习者初始技能、当前技能和目标技能。学习风格包括学习者的生理特征、心理特征和社会特征三个方面,1,学习者特征分析,学校教学管理数据库中记录着各届学生与教师的学习、工作、社会活动、奖励、处罚等情况,利用数据挖掘的关联分析与演变分析等功能,寻找师生各种行为活动之间的内在联系。如“当存在A,B时可以推出C”这样的规则,即当有A行为和B行为发生时,还会有C行为。在实际情境中,如果发现学生或教师已有A,B行为时,马上可以分析其产生C行为的可能性,及时
8、制定策略促进或制止C行为的发生,2,干预师生行为,利用学校教学数据库中存放的历届学生各门学科的考试成绩,结合数据挖掘的关联分析与时间序列分析等相关功能,就能从这些海量数据中挖掘出有用的信息,帮助分析这些数据之间的相关性、回归性等性质,得出一些具有价值的规则和信息,最终找到影响学生成绩的原因。,3,合理设置课程,在教学科研网络普遍建立的今天,利用数据挖掘工具,对学生的学习成绩数据库、行为记录数据库、奖励处罚数据库等进行分析处理,可以即时得到学生的评价结果,对学生出现的不良学习行为进行及时指正。另外,这种系统还能够克服教师主观评价的不公正、不客观的弱点,减轻教师的工作量。,4,学习评价,6,自适应
9、学习系统中教育大数据应用,基于大数据的自适应学习系统运行流程图,第一步,学习者生成学习行为数据,经过内容传递模块,数据将被标记上时间戳;第二步,数据按照预先定义的结构存入学习者数据库;第三步,预测模块从学习者数据库和学生信息系统中采集数据,根据不同的分析目的,调用不同的分析工具和模型对数据进行分析;第四步,自适应模块根据预测模块中数据挖掘和分析的结果,通过内容传递模块为学习者提供合适的学习指导和学习策略;第五步,预测模块中数据挖掘和分析的结果同时被传递给显示模块,供教师和教学管理者使用;最后,教师和教学管理者根据分析结果,通过干预模块对系统进行人为干预,自适应学习系统包含六大模块:(1内容传递
10、模块。管理、维护、传递个性化的学习内容与评价给学习者,以支持学习者的学习行为。(2)学习者数据库。存储学习者在学习系统中的时间戳标记的学习者输人和学习行为数据。(3)预测模块。整合系统外部学习者信息系统中的数据和系统内部学习者学习行为数据,通过对数据的处理和分析,对学习者未来的学习行为和结果进行预测。(4)显示模块。将预测模块中的运行结果以可视化的方式显示给各类使用者。(5)自适应模块。根据预测模块的运行结果,触发内容传递模块,再根据学习者的学习水平和兴趣,推送合适的学习内容给学习者。(6)干预模块。允许教师、教学管理者和系统开发人员根据预测模块的运行结果,对自适应系统实施人为干预,7,教育数
11、据挖掘和学习分析的区别,早期的教育数据挖掘主要是网站日志数据的挖掘,现在新的计算机技术支持的交互式学习方法和工具 (智能辅导系统、 仿真、 游戏) , 为量化和收集学生行为数据带来了新的机会。 特别是更加集成、 更加模块化和更加复杂化的在线学习系统提供了更多类型的数据,其中包含了数据挖掘算法需要的许多变量。 教育数据挖掘能发现这些数据中的模式和规律,探索建立预测模型,让我们重新发现和预测学生如何学习。,1,教育数据挖掘,对学习分析的定义,指的是对学生学习过程中产生的大量数据进行解释,目的是评估学业进步、预测未来表现、发现潜在问题。数据来自学生的显性行为,如完成作业和参加考试;还有学生的隐性行为
12、, 如在线社交,课外活动,论坛发帖,以及其他一些不直接作为学生教育进步评价的活动。学习分析模型处理和显示的数据帮助教师和学校更好地理解教与学。学习分析的目标是使教师和学校创造适合每个学生需要和能力的教育机会。,2,学习分析,8,教育数据挖掘和学习分析典型应用,详细应用领域情况,教育数据挖掘和学习分析应用领域主要包括:学习者的知识、行为和经历建模;学习者建档;领域知识建模;趋势分析,9,数字化学习的发展性评价系统的特征分析,已有研究认为,基于发展性评价的数字化学习评价系统,如网络教学中的学习评价系统应支持过程信息的全面采集、支持自评与互评、支持多种反馈形式等,结合大数据及数字化学习的特征,大数据
13、背景下的数字化学习发展性评价系统应具备如下特征:,10,数字化学习发展性评价系统设计,系统模型设计,教师,学生,干预/评价,课程学习活动,讨论互动,学习契约,课前测试,过程测试,章节测试,同学互评,期末测试,教师评价,随堂记录卡,评测功能子系统,数据采集,数据清理,数据转化,混合存储系统,教育数据挖掘,社会网络分析,语义分析,对比分析,对比分析,结果数据库,分析结果,大数据,分析子系统,采集与存储子系统,仪表盘,及时反馈,诊断性评价,过程性评价,终结性评价,反馈子系统,可视化数据,在对现存问题及系统特征分析的基础上,构建了大数据理念下的数字化学习发展性评价系统模型。该系统由测评功能子系统、采集
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 教育 领域 应用 课件
链接地址:https://www.31ppt.com/p-1563521.html