大学物理热学完整课件.ppt
《大学物理热学完整课件.ppt》由会员分享,可在线阅读,更多相关《大学物理热学完整课件.ppt(266页珍藏版)》请在三一办公上搜索。
1、精选,1,热 学,精选,2,热学的研究对象及内容, 对象:宏观物体(大量分子原子系统) 或物体系 热力学系统 。,内容:与热现象有关的性质和规律。,例如汽缸中的气体:,外界:热力学系统以外的、与系统相关的其它物体。,精选,3,宏观物体的微观模型:大量微观粒子(分子、原子等)组成的宏观体系。,微观粒子体系的基本特征:(1) 非常小。(2) 微观粒子数非常巨大.(3)粒子之间存在相互作用力-分子力.(4)分子或原子都以不同的速率不停地运动(是杂乱无章的)。,精选,4,热学的研究方法, 热力学(thermodynamics)(宏观方法),宏观基本实验规律,热现象规律,特点:,普遍性、可靠性。(但无法
2、给出更本质的解释,且只能描述平均行为,无法描述涨落), 统计力学(statistical mechanics)(微观方法),对微观结构提出模型、假设,热现象规律,特点:可揭示本质,描述涨落,但受模型局限。,精选,5,热力学系统的各种分类,按系统与外界交换特点分:孤立系统:与外界既无能量又无物质交换的系统封闭系统:与外界只有能量交换而无物质交换的系统开放系统:与外界既有能量交换又有物质交换的系统绝热系统:与外界没有热量交换的系统,按系统组成的化学成分分: 单元系:由一种化学成分组成的系统,如氧气 多元系:由多种化学成分组成的系统,如空气,按系统组成均匀性分: 单相系:由单一均匀成分构成的系统,如
3、水、 多相系:由多个均匀成分组合的系统,如水与水蒸汽组合的系统,精选,6,物态,精选,7,热学的两部分内容: (1) 热力学:学习静止物体的不同状态、 它们的能量差别,状态发生转变的规律等。 (为简单起见,忽略与物体运动,几何变形等力学课中相关的东西)。(2) 分子运动论:学习分子运动的某些规律和描述方法, 以及它们与热力学之间的联系。 (分子:指组成物质的微观粒子。),具体内容特点:以气体为主,以气体为例来学习相关概念和原理。其中的一些基本东西是普遍适用的,液体、固体等任何物体都必须遵守它。,实际上,历史上热学的建立和发展与这个问题有过密切关系:如何将燃料通过燃烧化学反应放出的热更有效地转换
4、为机械能? (即热能机械能之间的转换效率。热学因此与“能源”问题关系密切。),精选,8,平衡态(equilibrium state): 在无外界影响的条件下,系统所有可观察的宏观性质不随时间改变的状态。,非平衡态: 不具备两个平衡条件之一的系统.,设一容器,用隔板将其隔开,当隔板右移时,分子向右边扩散,在这过程中,各点密度、温度等均不相同,这就是非平衡态。但随着时间的推移.,平衡条件: (1) 系统与外界在宏观上无能量和物质的交换, (2) 系统的宏观性质不随时间改变。,精选,9,终了(平衡态),扩散(非平衡态),精选,10,需要保温的原因是:系统可能会以你不容易察觉的方式偷偷地通过容器壁 与
5、外界交换着某种东西:热=一种能量流动的模式。,平衡态:孤立系统所长期维持的状态。,孤立: 不受干扰,不与系统外的其它物质发生任何关系 (发生相互作用,或交换任何东西)。,注意:“孤立=无相互作用”,“长期维持的状态”,这两个特色表明, “平衡态”概念与“惯性”运动概念非常相似。实际上,平衡态概念在热学中有着与惯性概念在力学中的同等重要地位。可以说是热学中的“惯性”状态,是个安静老实的状态。,?如何实现这个平衡态,比如气体? 日常经验告诉我们,除了要把它盖严,让它安静地不受机械扰动外,还需要 (1)尽量“绝对”地保温,(2)有时还要耐心地等一段时间。 (系统从非平衡态过渡到平衡态所经历的时间,叫
6、弛豫时间),实验室里,绝热=保温,最常见的办法是用: 杜瓦瓶=开水瓶。因此,“用杜瓦瓶实现绝热”的山寨版说法就是“用开水瓶保温”。,精选,11,(1)平衡态是一种热动平衡;,处在平衡态的大量分子仍在作热运动,而且因为碰撞, 每个分子的速度经常在变,但是系统的宏观量不随时间 改变。,(2)平衡态是一种理想概念。,两点说明:,系统所受外界影响可以略去,宏观性质只有很小变化时,可近似看作是平衡态。,系统所受外界影响,且宏观性质不变化时,称系统处于稳定态。,精选,12,热接触:如果两个(或多个)系统之间的器壁不绝热,它们之间可以传热,或导热,则称之为热接触。,热接触,热接触的系统之间可以有能量传递。这
7、种能量的流动方式称作“热量”,以区别于,比如,通过作“功”发生的机械能传递。,热平衡多个系统通过热接触实现的总热平衡,精选,13,C物体(平衡态C),A物体(平衡态A),B物体(平衡态B),热接触,C物体(平衡态C),A物体(平衡态A),B物体(平衡态B),有三个平衡系统 A,B,C,让它们热接触,并看作一总系统。总系统达到平衡后,各子系统的状态A, B, C,一般与原来的不同。,如果与原来相同,A=A, B=B, C=C, 我们称原来的三个系统处于 互相平衡(互为平衡)的状态,问题:两个(或多个)平衡系统热接触后,是否还能保持原来(即接触前)的平衡状态?,精选,14,多个热接触系统的总热平衡
8、 。总热平衡。 热平衡态的传递性:第零定律。,热平衡态的传递性:如果A与B互相平衡, B与C互相平衡,那么一定有A与C也互相平衡。(热力学第零定律),A与B互相平衡的意思是:虽然热接触允许它们之间作热交换,但它们间实际上已没有热交换发生。,问题:两个(或多个)平衡系统热接触后,是否还能保持原来(即接触前)的平衡状态?,C物体(平衡态C),A物体(平衡态A),B物体(平衡态B),热接触,C物体(平衡态C),A物体(平衡态A),B物体(平衡态B),精选,15,引入温度的目的:如何判断平衡系统A、B是否互为平衡的, 相差多远,如让 它们做热接触时,热量将向何方向转移?,A物体(平衡态A),B物体(平
9、衡态B),设有A,B两个平衡系统。问题:如何方便地判断它们是否还是互相平衡的?,根据前面的“平衡可传递”原理,我们可用另一个“小”系统C,先让它与A接触并达到热平衡态C ,再让它与B接触,同时考察它的状态是否发生了改变。,C,精选,16,因此温度完全是为了判断热接触下不同物体之间还能不能维持原来的平衡态而引入的物理量。,通过测量温度的办法,我们可不必让不同物体作直接热接触,就能方便地判断出如果它们作热接触后可获得:状态是否改变、热量的传递方向等重要信息。,A物体(平衡态A),B物体(平衡态B),根据前面的“平衡可传递”原理,我们可用另一个“小”系统C,先让它与A接触并达到热平衡态C ,再让它与
10、B接触,同时考察它的状态是否发生了改变。,C,C就是一个温度计!(1)小是为了不干扰被测量的对象。(测量仪器) (2)我们能够观察它的状态变化。如伴随的几何变化。,最容易我们观察和量度!,如在其上标上刻度,就可能定量地判断许多与平衡态有关的东西!,精选,17,温度的测量和标定方法: 温度计的标定:水的三相共存(热平衡)状态,沸点。摄氏,华氏,绝对温标。,温度计:材料有气体或液体,量度材料的几何变化。有许多材料 可选择,标定后,在一定精度和范围内,能给出同样温度。标定: 水的三相共存(热平衡)状态,沸点。摄氏,华氏温标,平衡态和它的可传递性质是存在温度概念的前提。测量和实验显示,自然界的确存在温
11、度这个量。,绝对温标与摄氏温标的关系:,问题是:需要标定几个点才行?,早期:两个现在:1个!,因为有绝对零度这个极限状态!,国际上约定将水的三相共存(热平衡)状态标定为273.15度。(以气体温度计为标准),符号T, 单位K,精选,18,气体的质量,摩尔量、体积、压力、化学组成。,温度是热学领域建立的一个特别物理量,与热平衡有密切关系。,除此以外,描述平衡系统还有其它量:来自几何测量,力学,化学,电磁学,等等。,体积V,质量M压力P,E,DB,H,化学组成(定组成定律):,M=M1+M2+M3+ ,混合气体的分子组分,分子数目: N=N1+N2+N3+,因为N等很大, 通常用NA=6.0221
12、023 做他们的单位,称摩尔量(数)。,(气,液那样的流体,平衡时只有压力。固体平衡时还有剪力),精选,19,各组分分子的质量(分子量):,质量密度,分子数密度,精选,20,物态方程(状态方程),当单相系统处于平衡态时,描述其性质的宏观物理量叫状态参量;这些状态参量间存在一定的函数关系,称之为状态方程。,精选,21,对单组分气体,阿伏加德罗发现: 相同温度,压强和摩尔数的不同气体都有同样的体积。 C=nR R是和气体材料都无关的常数(普适气体常数).,如对一定质量的处于平衡状态的简单气体,发现反映其宏观性质的量是 P、V和T。,分析综合后有:PV=CT 其中C是常数,与气体量成正比。,波意尔定
13、律:温度固定时,PV=const.,吕萨克定律:压强固定时,VT,查理定律:体积固定时,PT,精选,22,的极限下才可能严格成立。,当然这只是一个理想的极限,实际情况总会有些偏差。因此这个状态方程被称为理想气体状态方程。当密度较大时,与理想气体状态方程的偏离会很大。这时应该寻找它的改善办法,仔细的测量显示,气体越稀薄(n越小),它们的近似程度越好。现在人们相信它们只在,。,精选,23,例题,氧气瓶的压强降到106Pa即应重新充气,以免混入其他气体而需洗瓶。今有一瓶氧气,容积为32L,压强为1.3107Pa,若每天用105Pa的氧气400L,问此瓶氧气可供多少天使用?设使用时温度不变。,解: 根
14、据题意,可确定研究对象为原来气体、用去气体和剩余气体,设这三部分气体的状态参量分别为,使用时的温度为T,分别对它们列出状态方程,有,精选,24,设可供 x 天使用,则有:,精选,25,一自行车轮胎,在温度为00C时打入空气,直到胎内压强1.5atm. (1)由于摩擦与日晒,车胎温度升高到300C,问此时轮胎内压强为多少?(2)在骑车过程中,胎被刺破一小洞而漏气,问当自行车停下胎的温度又降至00C时,胎内漏掉的气体是原有气体的百分之几?,解: (1)设自行车轮胎体积为V0,压强P0=1.5atm, T0=273K, T=303K.,胎被刺破前,胎内空气的质量一定,故可由,精选,26,(2) 车胎
15、漏气,由于车胎内气体压强最终要与大气压 相等,即P1=1.0atm, T1=T0=273K.,设此时胎内空气质量为M ,漏气前质量为 M,设漏掉空气与原有空气的百分比为x,则,结论:,而当质量改变时,就只能用,当质量不变时,有,精选,27,对平衡状态下的混合气体,道尔顿认为 可以用上面公式计算每个组分的压强(又叫分压强) 而混合气体的总压强是所有分压强的和:,(注意各组分都有相同的温度和体积),这些就是气体的平衡状态方程。 注意:它们只对平衡状态才成立。另外它们只是近似的自然规律,不是像万有引力或库仑定律那样的100%正确的公式。,精选,28,实际气体状态方程范德瓦尔斯的气体状态方程,范德瓦尔
16、斯利用微观分子运动的图象,提出理想气体的平衡状态方程修改为,在低密度极限v0下,有bv V,可以忽略,它令人满意地趋向理想气体。,尽管在密度较大时它有所改善,但仍与实验测量有偏差!,注意: a,b 是与材料有关的参数(系数,常数)。 理想气体状态方程中只有普适常数R。,后面将学习到,虽然范德瓦尔斯方程仍与实验有偏差,它对人们认识气体密度升高时的行为有巨大的理论意义。因此获得诺贝尔奖。,精选,29,2 气体动理论(气体分子运动的统计规律 ),精选,30,统计规律基本概念,什么是统计规律 (statistical regularity),大量偶然性从整体上所体现出来的必然性。,例. 扔硬币,统计规
17、律有以下几个特点: (1)只对大量偶然的事件才有意义. (2)它是不同于个体规律的整体规律.,精选,31,从入口投入小球,与钉碰撞,落入狭槽,( 偶然 ),隔板,铁钉,伽尔顿板实验,精选,32,大量偶然事件整体所遵循的规律 统计规律。,再投入小球:,经一定段时间后 , 大量小球落入狭槽。,分布情况:,中间多,两边少。,重复几次 ,结果相似。,单个小球运动是随机的 ,大量小球运动分布是确定的。,小球数按空间位置 分布曲线,精选,33, 统计规律的特点: (1)只对大量偶然的事件才有意义. (2)它是不同于个体规律的整体规律. (统计规律从本质上不同于力学规律。量变到质变) (3) 总是伴随着涨落
18、.,“涨落”现象,-测量值与统计平均值之间的偏离。,( 涨落现象是统计规律的重要特征。),对平衡态下的热现象进行微观描述,然后运用统计的方法求得: (1)宏观量与微观量的统计平均值的关系,揭示宏观量的微观本质; (2)平衡态下微观量的统计分布。如:分子速度、能量的分布等,统计物理学的任务:,精选,34,(2) 各种可能发生的事件的概率总和等于1.,(几率归一化条件),概率的性质:,(1) 概率取值域为,四、 统计的基本概念,1. 概率,如果N次试验中出现A事件的次数为NA,当N时,比值NA/N称为出现A事件的概率。,精选,35,算术平均值,统计平均值,称为出现 的概率,精选,36,对于连续型随
19、机变量,统计平均值为,“涨落”现象,-测量值与统计值之间总有偏离,处在平衡态的系统的宏观量,如压强P,不随时间改变, 但不能保证任何时刻大量分子撞击器壁的情况完全一样, 分子数越多,涨落就越小。例如,对1mol分子系统,涨落约为10-12数量级,精选,37,2.1 理想气体的压强,一、理想气体的微观假设,(1)质点 (分子线度分子间平均距离)(2)遵从牛顿力学规律(3)除碰撞瞬间,分子间、分子与器壁间无相互作用力。(4)分子间、分子与器壁间的碰撞弹性碰撞,1、关于每个分子力学性质的假设,精选,38,2、关于分子集体运动的统计假设,(3)平衡态分子速度取向各方向等概率,(2)无外场时,平衡态分子
20、按位置均匀分布,(1)通过碰撞分子速度不断变化,精选,39,二、理想气体压强公式的推导 (书P27),平衡态 忽略重力 分子看成质点,分子数密度,速度为 分子数密度,精选,40,压强:,精选,41,平动动能的统计平均值,求统计平均值:,压强(宏观量)与分子平动动能(微观量)的统计平均值成正比。,精选,42,如何取小体元,涨落0,标准状态下空气,微观大:,宏观小,微观大,精选,43,2.2 温度的微观意义,精选,44,下面会看到,分子热运动的平均转动和平均振动动能,也都和温度有关。,热力学温度是分子平均平动动能的量度。,温度反映了物体内部分子无规则运动的激烈程度。,精选,45,(2)温度是一个统
21、计概念,描述大量分子的集体状态。,(3)温度所反映的运动,是在质心系中表现的分子的无规则运动(热运动)。,(1)温度描述热力学系统的平衡态,方均根速率:,由,精选,46,2.3 能量均分定理(P80),一个分子的能量,总能写成关于坐标和速度的平方项之和:,质心平动动能:,绕过质心轴的转动动能:,原子间的振动动能:,原子间的振动势能:,精选,47,在温度 T 的平衡态下,一个分子的能量的统计平均值是多少?,对于平动动能,已经知道,在温度 T 的平衡态下,分子能量表达式中任何一个平方项的统计平均值都等于 。,一般地,可以证明:,精选,48,一、气体分子的自由度(degree of freedom)
22、,力学对自由度的定义:确定物体空间位置的独立坐标的数目。,分子能量表达式中平方项的数目与自由度有关。,1、单原子分子(如 He,Ne),质点,只有平动自由度,分子平均能量:,能量表达式中包括 3 个平方项。,精选,49,2、双原子分子(如 O2 ,H2 ,CO ),平动自由度为3,平动,平动 + 转动 + 振动,刚性分子:平动 + 转动,精选,50,转动自由度为2,转动,精选,51,双原子分子的平均能量,振动自由度为1,动能,势能,微振动简谐振动,振动自由度 ,但 。,?,2个平方项,精选,52,3、多原子分子,平动 + 转动 + 振动,(1)平动自由度为3,(2)转动自由度,非直线型分子(如
23、H2O)转动自由度为3,精选,53,直线型分子(如CO2)转动自由度为2,(3)振动自由度,非直线型分子(如H2O),由n(2)个原子组成的分子,一般最多有3n个自由度,其中3个平动,3个转动,其余为振动自由度 ,例如n=3,精选,54,直线型分子,例如CO2,分子的平均能量:,如分子的运动受到某种限制,其自由度数目会减少。,精选,55,二 、能量均分定理,分子频繁碰撞,统计地看,能量在各个自由度上均分。(没有任何自由度占优势),在温度 T 的平衡态下,物质(气体、液体和固体)分子的每一个自由度的平均动能都相等,而且都等于 。,物理解释:,分子运动总平均能量:,精选,56,常温(T300K,能
24、量102eV):振动能级难跃迁,对能量变化不起作用。 “冻结”振动自由度,分子可视为刚性。,1 eV 热能相当温度 104 K,精选,57,刚性分子:常温,不计振动自由度,晶格点阵上的离子(固体):,只有振动自由度,精选,58,三、理想气体的内能,分子间相互作用可以忽略不计,理想气体的内能 = 所有分子的热运动动能之总和,1mol 理想气体的内能为,一定质量理想气体的内能为,温度改变,内能改变量为,精选,59,例题,就质量而言,空气是由76%的N2,23%的O2和1%的Ar三种气体组成,它们的分子量分别为28、32、40。空气的摩尔质量为28.910-3kg,试计算1mol空气在标准状态下的内
25、能。,解: 在空气中,N2质量,摩尔数,O2质量,摩尔数,精选,60,Ar质量,摩尔数,1mol空气在标准状态下的内能,精选,61,2.4 实际气体等温线 (书P23-24),精选,62,2.5 范德瓦耳斯方程,了真实气体的物态方程,(Van der Waals equation),理想气体:,真实气体:,不满足理气物态方程。,较大,,较小,,满足理气物态方程;,T 较高,,T 较低,,找真实气体物态方程的途径:, 从实验中总结出经验的或半经验的公式, 修改理气模型,在理论上导出物态方程,1873年,范德瓦尔斯用简洁的物理模型导出, 范德瓦耳斯方程。,精选,63,一. 气体分子间的作用力,分子
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 热学 完整 课件
链接地址:https://www.31ppt.com/p-1562121.html