机器人传感器课件.ppt
《机器人传感器课件.ppt》由会员分享,可在线阅读,更多相关《机器人传感器课件.ppt(100页珍藏版)》请在三一办公上搜索。
1、.,第六章 机器人传感器,2,.,6.1.1 传感器的定义6.1.2 传感器的组成6.1.3 传感器的分类6.1.4 传感器的数学模型6.1.5 传感器的基本特征6.1.6 传感器的发展方向,6.1 传感器概述,3,.,将被测非电量信号转换为与之有确定对应关系电量输出的器件或装置叫做传感器,也叫变换器、换能器或探测器。,6.1.1 传感器的定义,4,.,6.1.2 传感器的组成,5,.,6.1.2 传感器的组成,6,.,6.1.2 传感器的组成,7,.,敏感元件:直接感受被测非电量并按一定规律转换成与被测量有确定关系的其它量的元件。,传感元件:又称变换器。能将敏感元件感受到的非电量直接转换成电
2、量的器件。,8,.,压力传感器示例,9,.,10,.,6.1.3 传感器的分类,1按工作机理分类:根据物理和化学 等学科的原理、规律和效应进行分类,2按被测量分类:根据输入物理量的 性质进行分类。,3按敏感材料分类:根据制造传感器 所使用的材料进行分类。可分为半 导体传感器、陶瓷传感器等。,11,.,6.1.3 传感器的分类,4. 按能量的关系分类:根据能量观点分类,可将传感器分为有源传感器和无源传感器两大类。,有源传感器是将非电能量转换为电能量,称之为能量转换型传感器,也称换能器。通常配合有电压测量电路和放大器。,如:压电式、热电式、电磁式等。,12,.,6.1.3 传感器的分类,无源传感器
3、又称为能量控制型传感器。被测非电量仅对传感器中的能量起控制或调节作用。所以必须具有辅助能源(电能)。,如:电阻式、电容式和电感式等。,5. 其他:按用途、学科、功能和输出信号的性质等进行分类。,13,.,14,.,电容法测位移,15,.,电感法测厚度,16,.,霍尔法计数,17,.,霍尔法测转速,18,.,半导体法测压力,19,.,6.1.4 传感器的数学模型,从系统角度看,一种传感器就是一种系统。而一个系统总可以用一个数学方程式或函数来描述。即用某种方程式或函数表征传感器的输出和输入的关系和特性,从而,用这种关系指导对传感器的设计、制造、校正和使用。 通常从传感器的静态输入-输出关系和动态输
4、入-输出关系两方面建立数学模型。,20,.,1.静态模型,静态模型是指在输入信号不随时间变化的情况下,描述传感器的输出与输入量的一种函数关系。,如果不考虑蠕动效应和迟滞特性,传感器的静态模型一般可用多项式来表示:,21,.,2.动态模型,动态模型是指传感器在准动态信号或动态信号作用下,描述其输出和输入信号的一种数学关系。,动态模型通常采用微分方程和传递函数描述。,22,.,3 .微分方程,大多数传感器都属模拟系统之列。描述模拟系统的一般方法是采用微分方程。,在实际的模型建立过程中,一般采用线性常系数微分方程来描述输出量 y和输入量 x 的关系。,23,.,其通式如下:,an,an-1a0和bm
5、,bm-1b0 为传感器的结构参数。除b0 0外,一般取b1,b2bm为零.,24,.,如果y(t)在t0时, y(t) =0,则y(t) 的拉氏变换可定义为,4.传递函数,式中s=+j,0。,对微分方程两边取拉氏变换,则得,25,.,定义输出y(t)的拉氏变换Y(S)和输入x(t)的拉氏变换X(S)的比为该系统的传递函数H(S),则,对y(t)进行拉氏变换的初始条件是t0时, y(t)=0。对于传感器被激励之前所有的储能元件如质量块、弹性元件、电气元件等均符合上述的初始条件。,26,.,对于多环节串、并联组成的传感器,若各环节阻抗匹配适当,可忽略相互间的影响,传感器的等效传递函数可按代数方式
6、求得。,显然H(s)与输入量x(t)无关,只与系统结构参数有关。因而H(s)可以简单而恰当地描述传感器输出与输入的关系。,27,.,若传感器由r个环节串联而成,对于较为复杂的系统,可以将其看作是一些较为简单系统的串联与并联。,28,.,若传感器由p个环节并联而成,29,.,6.1.5 传感器的基本特征,1. 传感器的静特性 传感器的静态特性是指当被测量处于稳定状态下,传感器的输入与输出值之间的关系。传感器静态特性的主要技术指标有:线性度、灵敏度、迟滞和重复性等。(1).线性度 传感器的线性度是指传感器实际输出输入特性曲线与理论直线之间的最大偏差与输出满度值之比,即,30,.,(2).灵敏度 传
7、感器的灵敏度是指传感器在稳定标准条件下,输出量的变化量与输入量的变化量之比,即(3).迟滞 传感器在正(输入量增大)反(输入量减小)行程中,输出输入特性曲线不重合的程度称为迟滞,迟滞误差一般以满量程输出的百分数表示,31,.,(4).重复性 传感器在同一条件下,被测输入量按同一方向作全 量程连续多次重复测量时,所得输出输入曲线的不一致程度,称重复性。重复性误差用满量程输出的百分数表示,即近似计算,32,.,(5).分辨力 传感器能检测到的最小输入增量称分辨力,在输入零点附近的分辨力称为阈值。(6).零漂 传感器在零输入状态下,输出值的变化称为零漂,零漂可用相对误差表示,也可用绝对误差表示。,3
8、3,.,2. 传感器的动态特性 传感器能测量动态信号的能力用动态特性表示。动态特性是指传感器测量动态信号时,输出对输入的响应特性。传感器动态特性的性能指标可以通过时域、频域以及试验分析的方法确定,其动态特性参数如:最大超调量、上升时间、调整时间、频率响应范围、临界频率等。,34,.,6.1.6 传感器的发展方向,1. 新型传感器的开发 鉴于传感器的工作机理是基于各种效应和定律,由此启发人们进一步发现新现象、采用新原理、开发新材料、采用新工艺,并以此研制出具有新原理的新型物性型传感器,这是发展高性能、多功能、低成本和小型化传感器的重要途径。总之,传感器正经历着从以结构型为主转向以物性型为主的过程
9、。,35,.,2. 传感器的集成化和多功能化 随着微电子学、微细加工技术和集成化工艺等方面的发展,出现了多种集成化传感器。这类传感器,或是同一功能的多个敏感元件排列成线性、面型的阵列型传感器;或是多种不同功能的敏感元件集成一体,成为可同时进行多种参数测量的传感器;或是传感器与放大、运算、温度补偿等电路集成一体具有多种功能实现了横向和纵向的多功能。,36,.,3. 传感器的智能化 “电五官”与“电脑”的相结合,就是传感器的智能化。智能化传感器不仅具有信号检测、转换功能,同时还具有记忆、存储、解析、统计处理及自诊断、自校准、自适应等功能。如进一步将传感器与计算机的这些功能集成于同一芯片上,就成为智
10、能传感器。,37,.,6.2 位置传感器,6.2.1 线位移检测传感器6.2.2 角位移检测传感器6.2.3 速度、加速度传感器6.2.4 电子罗盘及陀螺仪6.2.5 GPS全球导航系统,38,.,6.2.1 线位移检测传感器,1)、光栅位移传感器2)、感应同步器3)、磁栅位移传感器,39,.,1). 光栅位移传感器,(1)、光栅的构造:,40,.,1). 光栅位移传感器,(2)、工作原理,把两块栅距W相等的光栅平行安装,且让它们的刻痕之间有较小的夹角时,这时光栅上会出现若干条明暗相间的条纹,这种条纹称莫尔条纹,它们沿着与光栅条纹几乎垂直的方向排列,如图所示。,41,.,1). 光栅位移传感器
11、,莫尔条纹具有如下特点:1.莫尔条纹的位移与光栅的移动成比例。光栅每移动过一个栅距W,莫尔条纹就移动过一个条纹间距B 2.莫尔条纹具有位移放大作用。莫尔条纹的间距B与两光栅条纹夹角之间关系为3.莫尔条纹具有平均光栅误差的作用。,42,.,1). 光栅位移传感器,通过光电元件,可将莫尔条纹移动时光强的变化转换为近似正弦变化的电信号,如图所示。,其电压为:,43,.,1). 光栅位移传感器,将此电压信号放大、整形变换为方波,经微分转换为脉冲信号,再经辨向电路和可逆计数器计数,则可用数字形式显示出位移量,位移量等于脉冲与栅距乘积。测量分辨率等于栅距。,44,.,2)、感应同步器,(2).感应同步器结
12、构,节距2(2mm),节距(0.5mm),滑尺,定尺,45,.,2)、感应同步器,包括定尺和滑尺,用制造印刷线路板的腐蚀方法在定尺和滑尺上制成节距T(一般为2mm)的方齿形线圈。定尺绕组是连续的,滑尺上分布着两个励磁绕组,分别称为正弦绕组和余弦绕组。当正弦绕组与定尺绕组相位相同时,余弦绕组与定尺绕组错开1/4节距。滑尺和定尺相对平行安装,其间保持一定间隙(0.050.2mm)。,46,.,2)、感应同步器,2.感应同步器的工作原理 在滑尺的绕组中,施加频率为f(一般为210kHz)的交变电流时,定尺绕组感应出频率为f的感应电动势。感应电动势的大小与滑尺和定尺的相对位置有关。 设正弦绕组供电电压
13、为Us,余弦绕组供电电压为Uc,移动距离为x,节距为T,则正弦绕组单独供电时,在定尺上感应电势为,47,.,2)、感应同步器,余弦绕组单独供电所产生的感应电势为,由于感应同步器的磁路系统可视为线性,可进行线性叠加,所以定尺上总的感应电势为,48,.,2)、感应同步器,式中 : K定尺与滑尺之间的耦合系数; 定尺与滑尺相对位移的角度表示量(电角度)T节距,表示直线感应同步器的周期,标准式直线感应同步器的节距为2mm。 利用感应电压的变化可以求得位移X,从而进行位置检测。,49,.,3. 测量方法 根据对滑尺绕组供电方式的不同,以及对输出电压检测方式的不同,感应同步器的测量方式有鉴相式和鉴幅式两种
14、工作法。,2)、感应同步器,50,.,(1)鉴相式工作法 滑尺的两个励磁绕组分别施加相同频率和相同幅值,但相位相差90o的两个电压,设,从上式可以看出,只要测得相角,就可以知道滑尺的相对位移x:,2)、感应同步器,51,.,2.鉴幅工作法 在滑尺的两个励磁绕组上分别施加相同频率和相同相位,但幅值不等的两个交流电压:,由上式知,感应电势的幅值随着滑尺的移动作正弦变化。因此,可以通过测量感应电动势的幅值来测得定尺和滑尺之间的相对位移。,2)、感应同步器,52,.,3)、磁栅位移传感器,(1).磁栅式位移传感器的结构,53,.,(2).原理: 在用软磁材料制成的铁芯上绕有两个绕组,一个为励磁绕组,另
15、一个为拾磁绕组,将高频励磁电流通入励磁绕组时,当磁头靠近磁尺时在拾磁线圈中感应电压为:,U0输出电压系数; 磁尺上磁化信号的节距; 磁头相对磁尺的位移; 励磁电压的角频率。,在实际应用中,需要采用双磁头结构来辨别移动的方向,3)、磁栅位移传感器,54,.,(3).测量方式A、鉴幅测量方式 如前所述,磁头有两组信号输出,将高频载波滤掉后则得到相位差为/2的两组信号 两组磁头相对于磁尺每移动一个节距发出一个正(余)弦信号,经信号处理后可进行位置检测。这种方法的检测线路比较简单,但分辨率受到录磁节距的限制,若要提高分辨率就必须采用较复杂的信频电路,所以不常采用。,3)、磁栅位移传感器,55,.,B.
16、鉴相测量方式将一组磁头的励磁信号移相90,则得到输出电压为在求和电路中相加,则得到磁头总输出电压为,则合成输出电压U的幅值恒定,而相位随磁头与磁尺的相对位置变化而变。读出输出信号的相位,就可确定磁头的位置。,3)、磁栅位移传感器,56,.,一、直流测速发电机二、光电式速度传感器三、差动变压器式速度传感器四、加速度传感器,6.2.3 速度、加速度传感器,57,.,一、直流测速发电机,测速发电机的结构有多种,但原理基本相同。图所示为永磁式测速发电机原理电路图。恒定磁通由定子产生,当转子在磁场中旋转时,电枢绕组中即产生交变的电势,经换向器和电刷转换成正比的直流电势。,直流测速发电机在机电控制系统中,
17、主要用作测速和校正元件。在使用中,为了提高检测灵敏度,尽可能把它直接连接到电机轴上。有的电机本身就已安装了测速发电机。,58,.,二、光电式速度传感器,光电脉冲测速原理如下图所示。物体以速度V通过光电池的遮挡板时,光电池输出阶跃电压信号,经微分电路形成两个脉冲输出,测出两脉冲之间的时间间隔t,则可测得速度为,59,.,二、光电式速度传感器,光电式转速传感器是由装在被测轴(或与被测轴相连接的输入轴)上的带缝圆盘、光源、光电器件和指示缝隙圆盘组成,如下图所示。光源发出的光通过缝隙圆盘和指示缝隙盘照射到光电器件上,当缝隙圆盘随被测轴转动时,圆盘每转一周,光电器件输出与圆盘缝隙数相等的电脉冲,根据测量
18、时间t内的脉冲数N,则可测得转速为,60,.,三、差动变压器式速度传感器,差动变压器式除了可测量位移外,还可测量速度。其工作原理如下图所示。差动变压器式的原边线圈同时供以直流和交流电流,即,61,.,三、差动变压器式速度传感器,当差动变压器以被测速度V=dx/dt移动时,在其副边两个线圈中产生感应电势,将它们的差值通过低通滤波器滤除励磁高频角频率后,则可得到与速度v(m/s)相对应的电压输出,即 差动变压器漂移小,其主要性能为:测量范围102000mm/s(可调),输出电压10V(max),输出电流10mA(max),频带宽度500Hz。,62,.,四、加速度传感器,作为加速度检测元件的加速度
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器人 传感器 课件
链接地址:https://www.31ppt.com/p-1556994.html