航向稳定性和回转性邱磊讲解课件.ppt
《航向稳定性和回转性邱磊讲解课件.ppt》由会员分享,可在线阅读,更多相关《航向稳定性和回转性邱磊讲解课件.ppt(85页珍藏版)》请在三一办公上搜索。
1、船舶操纵性与耐波性第2章 航向稳定性和回转性,邱磊qiu-,船舶操纵性与耐波性课件,船舶有哪些操纵方面的性能?,船舶操纵性与耐波性课件,固有动稳性(直线运动稳定性),船舶操纵性与耐波性课件,航向稳定性能(保向性),船舶操纵性与耐波性课件,初始转向性能与航行安全的关系,船舶操纵性与耐波性课件,回转性能与航行安全的关系,船舶操纵性与耐波性课件,停船操纵 - 停船性能,船舶操纵性与耐波性课件,第二章 航向稳定性和回转性,船舶操纵性与耐波性课件,第二章 航向稳定性和回转性,稳定性的概念:对处于定常运动状态的物体(或系统),若受到极小的外界干扰作用而偏离原定常运动状态;当干扰去除后,经过一定的过渡过程,
2、看是否具有回复到原定常运动状态的能力。若能回复,则称原运动状态是稳定的。,(a)直线运动稳定性,(b)方向稳定性,(c)位置稳定性,船舶操纵性与耐波性课件,Directionally unstable ships,An increasing number of new ships are directionally unstable under certain conditions of trim and are difficult to steer manuallySteady steering is only achieved by continually applying small s
3、hort alternating helm actionsDespite its problems, directional instability does allow a ship to make tight turnsBut it is important that the pilot or master is familiar with the ships behaviour and plans an alter course to allow for this,船舶操纵性与耐波性课件,影响方向稳定性的因素(Factors affecting directional stability
4、),Neither the centre of the hydrodynamic hull force, point A, nor the neutral steering point (N0) are fixed in position for a single vesselThe location of N0 depends uponthe centripetal force relative to the turning moment required for a given rate of turn and hullformThe position of A depends upon压
5、力足以的位置取决于:the flow conditions around the immersed hullformits fore and aft distribution of surface areaSo, the main factors affecting the directional stability are影响方向稳定性的主要因素有:Trim 纵倾Hullform 船型ahead speed 前进速度,船舶操纵性与耐波性课件,How does trim affect the directional stability?,Both head and stern trim inc
6、rease the ships moment of inertia 首倾和尾倾都增大了船舶的惯性矩So the required moment for a given rate of turn is increased by trim and the point N0 is moved further forwardMore important is that the trim also alters the fore and aft distribution of immersed hull surface and thus the position of A (see next page)
7、更为重要的是纵倾也改变了首尾湿表面积的分布和压力中心A的位置,船舶操纵性与耐波性课件,Stern trim moves A further aft Point A is well aft of the N0-pointso the ship needs a large helm force to maintain the turn the ship will steady up quickly with midships helmThus, directional stability is increased,Head trim moves A further aheadPoint A is
8、just aft of the N0-pointso only a small helm force is needed to maintain the turnbut the ship will be slow to steady up with midships helmThus, directional stability is decreased,船舶操纵性与耐波性课件,How does the hullform affect the directional stability?,Moderately high CB-hulls have a relatively large mome
9、nt of inertia about the vertical axes so point N0 will tend to be further forward than for finer lined shipsVery full-bodied hulls: point A tends to be even further forward than N0 so these ships are likely to be directionally unstable at small rudder anglesThe swing of the ship can distort the boun
10、dary layer to the extent that flow is directed to the wrong side of the rudder and the rudder force is reversed,船舶操纵性与耐波性课件,How does the ships ahead speed affect directional stability?,Increasing a ships ahead speed for a given rudder angle will move the N0-point further aft, thus the directional st
11、ability is decreasedA reduction in speed thus tends to increase a ships directional stability for a given rudder angleBut if the ship is moving too slow there will be insufficient flow for the rudder to be effective and the ship has lost “steerage way”.,船舶操纵性与耐波性课件,The directional stability can be i
12、mproved by using more “deadwood” at the stern 在船尾安装呆木analogous to the feathers on an arrow or dart!Examples of ways of increasing the deadwoodSkegs 尾鳍Fixed fins (submarine “stabilizers”) 稳定鳍Other stern appendages 其他附体,Ways of improving directional stability如何提高方向稳定性?,船舶操纵性与耐波性课件,第二章 航向稳定性和回转性,对稳定性概念
13、的理解,船舶操纵性与耐波性课件,(2-1),小扰动方程,为对稳定性作定量分析,采用“运动稳定性理论”分析方法。设船舶初始运动状态:u1=const=U, v1=r1=0.扰动后引起的扰动运动参数:由于对初始状态是小扰动,故可采用线性操纵运动方程(1-25)式来描述。因不操舵, .将式(2-1)代入式(1-25),,(1-25),船舶操纵性与耐波性课件,其中,第一式与后两式无关.第一式可重写为:,小扰动方程,即可求得小扰动方程:,(2-2),(2-3),第一式对应的特征方程为:,船舶操纵性与耐波性课件,小扰动方程,特征根为:故式(2-3)的解为: 总为负值,故对纵向速度扰动总具有稳定性。因此,船
14、舶在水平面内的航向稳定性主要取决于方程(2-2)的后二式。,分母为正,分子为负。,(2-4),(2-5),(2-3),船舶操纵性与耐波性课件,二元一阶常系数微分方程组,(2-7),(2-8),(2-6),小扰动方程,船舶操纵性与耐波性课件,特征方程,特征根,角速度扰动方程(2-7)的解为:,(2-9),(2-10),(2-11),船舶操纵性与耐波性课件,航向稳定性分析,接下来我们进行航向稳定性分析,其根为:,于是有:,可见:,船舶操纵性与耐波性课件,航向稳定性分析,皆为负实部的必要条件是:,两根将皆为实数,且必有一个正根,船舶操纵性与耐波性课件,航向稳定性分析,皆为负实部的必要条件是:,船舶操
15、纵性与耐波性课件,航向稳定性分析,可见,航向稳定性条件可归结为:,船舶操纵性与耐波性课件,水动力导数分析,较大的负值,不定符号的小量,图2-3,当具有横向加速度扰动时,船舶操纵性与耐波性课件,不定符号的小量,较大的负值,图2-4,当具有回转加速度扰动时,船舶操纵性与耐波性课件,受侧向扰动速度v作用时,较大的负值,不很大的负值,图2-5,船舶操纵性与耐波性课件,由角速度r引起的力和力矩,不定符号的小量,较大的负值,图2-6,船舶操纵性与耐波性课件,稳定性衡准数C,船舶操纵性与耐波性课件,稳定性衡准数C,船舶操纵性与耐波性课件,C0 船舶在水平面的运动具有直线稳定性;C0 不具有直线稳定性,转首稳
16、定力臂(抗干扰力臂),偏航力臂(或干扰力臂),稳定性衡准数C,船舶操纵性与耐波性课件,图 2-7,转首稳定力臂,偏航力臂,船舶操纵性与耐波性课件,影响航向稳定性的因素,(1)为改善其航向稳定性,应使Nr、Yv二者的负值增加,从C的表达式可见,此二者之乘积的正值就越大,显然有利于改善稳定性。(2) Nv 对稳定性的影响较大。虽然Nv 是个符号不定的小量,但在C 表达式中是以Nv(Yr-mu1) 形式出现的,而括号内的值是个大量,以便Nv 值变化对C 值影响较大。对一般船舶Yv、Nr 皆为负值,Yr 是个不定符号的数,所以只要Nv 为正值,船舶就能保证航向稳定性。(3)若沿船纵向设置升力面(如鳍、
17、舵等能产生升力的物体),则将其加在首或尾部都能使Nr 的负值增加,但若加在首部会使Nv增加负值,而加在尾部会使Nv 变正,故升力面设置在尾部可使Nr负值增加的同时又使Nv 值变正,故对航向稳定性的贡献比设置在首部要大。,船舶操纵性与耐波性课件,与船体几何形状的关系:,增加船长可使Nr负值增加,增加船舶纵中剖面的侧面积可使Nr、Yv的负值增加,增加Nv的有效方法是,增加纵中剖面尾部侧面积,可采用增大呆木,安装尾鳍,使船产生尾倾,削去前踵等,如图2-8所示。,图2-8,船舶操纵性与耐波性课件,船舶操纵性与耐波性课件,船舶操纵性与耐波性课件,船舶操纵性与耐波性课件,水深变化对航向稳定性的影响,图2-
18、9,由于浅水影响,可使在深水中不稳定的船,在浅水中成为稳定。在深水中稳定的船,到浅水中变得更稳定。但对某些肥大型船,存在某一危险水深,此时稳定性低于深水状态;随着水深进一步变浅,超过危险水深后,又会使稳定性好转。,船舶操纵性与耐波性课件,水深变化对航向稳定性的影响,水深变化将影响船舶的航向稳定性。由式(2-13) 可知,当Ir Iv 时,船舶具有航向稳定性。试验结果表明,对一般排水量船舶lv0 ,即位置力的压力中心总位于船中前,随水深变浅,lv 变化不大,而lr 的变化甚大,原因是随水深变浅,Yr 增加而引起,见图2-9。,图2-9,船舶操纵性与耐波性课件,开始操舵时,船舶重心的瞬时位置为回转
19、运动的起始点,称之为执行操舵点。,回转圈的主要特征参数为:,1)反横距从船舶初始的直线航线至回转运动轨迹向反方向最大偏离处的距离为S1。,2)正横距从船舶初始直航线至船首转向90度时,船舶重心所在位置之间的距离为S2。该值越小,则回转性就越好。,船舶操纵性与耐波性课件,回转圈的主要特征参数为:,3)纵距从转舵开始时刻船舶重心G点所在的位置,至船首转向90度时船舶纵中剖面,沿原航行方向计量的距离S3。一般船舶纵距约为3、4倍船长。其值越大,表示船舶对初始时刻的操舵反应越迟钝,即应舵较慢。,船舶操纵性与耐波性课件,4)战术直径从船舶原来航线至船首转向180度时,船纵中剖面所在位置之间的距离DT。其
20、值越小,则回转性越好。对一般普通船DT约为36倍船长,回转性较差者可达78倍船长。,回转圈的主要特征参数为:,船舶操纵性与耐波性课件,5)定常回转直径定常回转阶段船舶重心点圆形轨迹的直径D。一般D0.9DT。通常采用相对回转直径DL代表回转性优劣。通常认为回转性好的船,最小相对回转直径为3左右,回转性差的船约为10左右,大多数船在57的范围内。,回转圈的主要特征参数为:,船舶操纵性与耐波性课件,6)进程R自执行操舵点起至回转圈中心的纵向距离;R=S3-R;它表示船舶对舵作用的应答性,R越小则应答性越好,通常R/L数值约为l2。,回转圈的主要特征参数为:,船舶操纵性与耐波性课件,船舶回转过程中,
21、在船上还存在一个横向速度分量为零的点,称为枢心点p,,由图可见,枢心点前后横向速度反向。一般在初始操舵瞬时,枢心处于船体之撞击中心,约在船舶重心前1/10船长处。以后随回转过程的发展,枢心点位置向船首移动,直至定常回转状态,枢心位置稳定在重心前1/61/3船长处。所以,当船舶回转时,若驾驶人员站在枢心点p上,则可看到一方面船以Vp速度平移,另一方面船上前后各点以角速度r绕p点旋转。这样在操纵时可清晰地观察船舶的运动情况。所以,在条件许可时,驾驶室的位置最好设在枢心附近。,船舶操纵性与耐波性课件,回转圈(Turning Circle),最小回转直径是度量船舶操纵性能的一个重要参数(The min
22、imum turning diameter is one measure of a ships manoeuvring characteristics)影响最小回转直径的因素主要有(The minimum turning diameter varies with, for example):舵角、船速、船舶尺度、水深和纵倾,船舶操纵性与耐波性课件,影响最小回转直径的一些因素(Examples of factors effecting the minimum turning diameter),速度(Speed):舵角不变,船速增大,回转圈随之增大(With constant rudder an
23、gle, an increase in speed results in an increased turning circle)船速很低时由于舵效降低回转圈增大Very low speed (those approaching bare steerageway) also increases theturning circle because of reduced ruddereffect 船舶尺度(Vessel size):回转直径随着船舶尺度增大而增大(The turning diameter tends to increase with vessel size)水深(Water dep
24、th):水深极浅的情况下,最小回转直径可能倍增(Minimum turning diameter may more than double in very shallow water)!Smaller right-handed screw vessels may show a bias in turning a tighter circle to port than to starboard, due to the transverse thrust effectthis effect is often negligible in larger ships,船舶操纵性与耐波性课件,PROPEL
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 航向 稳定性 回转 性邱磊 讲解 课件

链接地址:https://www.31ppt.com/p-1551475.html