第四节最小相位系统与非最小相位系统课件.ppt
《第四节最小相位系统与非最小相位系统课件.ppt》由会员分享,可在线阅读,更多相关《第四节最小相位系统与非最小相位系统课件.ppt(15页珍藏版)》请在三一办公上搜索。
1、Sunday, December 4, 2022,1,最小相位系统与非最小相位系统,Sunday, December 4, 2022,2,最小相位系统和非最小相位系统,最小相位系统和非最小相位系统,定义:在右半S平面上既无极点也无零点,同时无纯滞后环节的系统是最小相位系统,相应的传递函数称为最小相位传递函数;反之,在右半S平面上具有极点或零点,或有纯滞后环节的系统是非最小相位系统,相应的传递函数称为非最小相位传递函数。,在幅频特性相同的一类系统中,最小相位系统的相位移最小,并且最小相位系统的幅频特性的斜率和相频特性的角度之间具有内在的关系。,对最小相位系统:w=0时j (w)=-90积分环节个
2、数 ; w=时j (w)=-90(n-m) 。 不满足上述条件一定不是最小相位系统。 满足上述条件却不一定是最小相位系统。,Sunday, December 4, 2022,3,最小相位系统和非最小相位系统,例:有五个系统的传递函数如下。系统的幅频特性相同。,Sunday, December 4, 2022,4,最小相位系统和非最小相位系统,设 , 可计算出下表,其中 为对数坐标中 与 的几何中点。,Sunday, December 4, 2022,5,由图可知最小相位系统是指在具有相同幅频特性的一类系统中,当w从0变化至时,系统的相角变化范围最小,且变化的规律与幅频特性的斜率有关系(如 j1
3、(w) )。而非最小相位系统的相角变化范围通常比前者大(如j2(w)、j3(w)、j5(w);或者相角变化范围虽不大,但相角的变化趋势与幅频特性的变化趋势不一致(如 j4(w) )。,最小相位系统和非最小相位系统,Sunday, December 4, 2022,6,最小相位系统和非最小相位系统,在最小相位系统中,对数频率特性的变化趋势和相频特性的变化趋势是一致的(幅频特性的斜率增加或者减少时,相频特性的角度也随之增加或者减少),因而由对数幅频特性即可唯一地确定其相频特性。 伯德证明,对于最小相位系统,对数相频特性在某一频率的相位角和对数幅频特性之间存在下述关系:,式中j0(w)为系统相频特性
4、在观察频率w0处的数值,单位为弧度;u=ln(w/w0)为标准化频率;A=ln|G(jw)|;dA/du为系统相频特性的斜率,当L(w)的斜率等于20dB/dec时,dA/du =1;函数为加权函数,曲线如图,Sunday, December 4, 2022,7,最小相位系统和非最小相位系统,上述公式称为伯德公式。该式说明对于最小相位系统,其幅频特性与相频特性紧密联系的,当给定了幅频特性,其相频特性也随之而定,反之亦然。因此,可只根据幅频特性(或只根据相频特性)对其进行分析或综合;而非最小相位系统则不然,在进行分析或综合时,必须同时考虑其幅频特性与相频特性。,在u=0(w=w0)时 ;,在u=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 最小 相位 系统 课件

链接地址:https://www.31ppt.com/p-1548625.html