设备故障诊断要点课件.ppt
《设备故障诊断要点课件.ppt》由会员分享,可在线阅读,更多相关《设备故障诊断要点课件.ppt(89页珍藏版)》请在三一办公上搜索。
1、第七章 机械设备的故障诊断,现代设备工程,第七章 机械设备的故障诊断,学习目标:通过本章学习,了解机械故障诊断技术的方法及分类;熟悉诊断参数的选择、判断标准的确定及信号采集的方法及原则;掌握常用的故障诊断方法 。学习重点:1、诊断参数的选择和判断标准的确定2、故障诊断的信号采集3、油样分析法的步骤、原理及内容学习难点: 常用的故障诊断方法应用。,劣化渐变过程如下:,设备劣化的渐变过程,第一节设备故障概述,一、故障及其分类 (一)故障的概念:故障就是设备因为某种原因丧失规定功能的现象。 1)设备包括元件、零件、部件、产品或者系统; 2)丧失规定功能,比破坏的含义要广泛得多。,(二)故障的分类,1
2、)按故障发生、发展的过程分类(1)突发性故障故障发生前没有明显的可察征兆,发生比较突然,有较大的破坏性。 (2)渐发性故障是由于设备中某些零件的技术指标不断恶化,最终超出允许的范围或允许的极限而引发的故障。其发生一般与磨损、腐蚀、疲劳等密切相关,特点是:故障一般发生在元器件有效寿命的后期;有规律,可以预防;发生概率与设备运转时间有关。,第一节设备故障概述,2)按故障的性质分类,分为自然故障和人为故障。 (1)自然故障:设备自身原因造成。又分正常自然故障和异常自然故障。正常自然故障 一般具有规律性,设备正常工作磨损、腐蚀引起的故障,会对设备的自然寿命产生影响。异常自然故障 因设计或制造不当造成设
3、备中存在某些薄弱环节而引发的故障,带有偶然性,有时又具有突发性。,第一节设备故障概述,(2)人为故障:操作使用不当或意外原因造成。为避免这类故障发生,设计时应尽量采用避免人为故障的结构,将人、机作为一个系统加以考虑,以有效地诊断和控制故障。,第一节设备故障概述,可归结为三方面,环境因素、人为因素和时间因素。 (一)环境因素所谓环境因素,就是力、能量、温度、湿度、振动、污染物这些外界因素,使机件发生磨损、变形、裂纹、腐蚀等各种形式的损伤。表7-1表示了由于机械能、热能、化学能、其他能量等环境因素引起的故障。,二、引起故障的外因,第一节设备故障概述,表7-1 环境影响及引起的故障,注:其他能量包括
4、核能、电磁能及生物因素等。,第一节设备故障概述,(二)人为因素,设备在设计、制造、使用和维修过程中,始终包含着人为因素的作用,特别是早期故障的发生大部分可以归因于人为因素。 1. 设计不良受条件的限制或存在考虑不周、设计差错等。 2. 质量偏差由于设备、仪器精度以及技术水平等条件的限制,铸造、锻造、热处理、焊接等工艺过程产生各种工艺缺陷,或其他加工过程中造成机件在结构和质量上的偏差。,第一节设备故障概述,3. 使用不当一台设备,在其整个生存周期内合理的运输和保管条件、使用条件和使用方法、维护保养和修理制度以及操作人员的技术水平等,对实际故障率将产生很大影响。这三项人为因素中,对故障率影响最大的
5、人为因素是使用不当。,第一节设备故障概述,(三)时间因素环境因素、人为因素是促使设备发生故障的诱因,在考虑环境因素和人为因素时还需考虑时间因素。常见的磨损、腐蚀、疲劳、变形等故障都与时间有密切的关系。尽管机件中存在着故障隐患及形成故障的其他外因,如果没有时间的延续故障不一定发生。可见,时间也是形成故障的主要外因之一。 在设备的故障中,除了意外的突发性故障以外,大多数都属于渐发性故障,而且,也只有这类渐发性故障,才为故障诊断提供了可能。,第一节设备故障概述,何谓设备故障诊断技术?,所谓设备故障诊断技术是指在设备运行中或基本不拆卸的情况下,掌握设备的运行技术状况,预测设备的可靠性,或判断设备故障的
6、部位和原因,即人们常说的动态诊断或在线诊断。,第二节 设备故障诊断技术 及其实施过程,.,原始的诊断技术 用手摸,以测定它的温度是否过高,振动是否过大;用耳听,以判别运动部件是否有异声等等,这种凭人们的感觉、听觉和人们的经验对机器设备的健康进行诊断的方法,我们把它叫做传统的诊断技术-或叫做原始的诊断技术。 现代的诊断技术 现代的诊断技术是指应用最新的现代化仪器设备和电子计算机系统等当代的最新技术来检查和识别机械设备及其零部件的实时技术状态,诊断它是否健康的技术。现在我们所说的诊断技术就是指这种现代诊断技术。,一、设备故障诊断的实施过程测取设备在运行中或相对静止条件下的状态信息,通过对信号的处理
7、和分析,并结合设备的历史状况,定量识别设备及其零部件的技术状态,并预知有关异常、故障和预测未来技术状态,从而确定必要的对策。信号采集特征提取状态识别诊断决策诊断技术划分为三个阶段:状态监测,分析诊断,治理预防。,第二节 设备故障诊断技术 及其实施过程,第二节 设备故障诊断技术 及其实施过程,(一) 状态监测通过传感器,采集设备在运行中的各种信息,把它转变为电信号或者其他信号,再把这个信号送到信号处理系统进行处理。信号处理系统主要就是把有用信号提取出来,而把无用信号、干扰信号排除。 (二) 分析诊断包括状态识别和诊断决策两个部分,状态识别就是把这些参数或者图谱和参考的参量或者参考的图谱进行比较,
8、来识别设备是否存在故障,通过这样状态识别以后,就可以做出诊断结果,即分析诊断。,第二节 设备故障诊断技术 及其实施过程,(三) 治理预防根据分析诊断得出的结论,确定治理修正预防的办法。包括调度、改变操作、更换停机检修等等。,第二节 设备故障诊断技术 及其实施过程,二、状态监测与故障诊断的区别与联系状态监测是故障诊断的基础和前提,没有状态监测就谈不上故障诊断。而故障诊断是对监测结果的进一步分析和处理,诊断是目的。,第二节 设备故障诊断技术 及其实施过程,三、设备故障诊断技术的分类,有三种分类方法: (一)按照诊断的目的、要求和条件分类分为功能诊断和运行诊断、定期诊断和连续监测、直接诊断和间接诊断
9、、在线诊断和离线诊断、常规诊断和特殊诊断、简易诊断和精密诊断等等。 1. 功能诊断和运行诊断功能诊断主要是针对新安装的设备或刚刚维修过的设备,而运行诊断更多是起到状态监测的功能。,第二节 设备故障诊断技术 及其实施过程,2. 定期诊断和连续监测3. 直接诊断和间接诊断直接诊断是直接根据关键零部件的状态信息来确定其所处的状态,例如轴承间隙、齿面磨损.直接诊断迅速可靠,但往往受到机械结构和工作条件的限制而无法实现。间接诊断是通过设备运行中的二次效应参数来间接判断关键零部件的状态变化。由于多数二次效应参数属于综合信息,因此在间接诊断中出现伪警或漏检的可能性会增加。,第二节 设备故障诊断技术 及其实施
10、过程,4. 在线诊断和离线诊断在线是指对现场正在运行设备的自动实时监测;而离线监测是利用磁带记录仪等将现场的状态信号记录后,带回实验室后再结合诊断对象的历史档案进行进一步的分析诊断或通过网络进行的诊断。,第二节 设备故障诊断技术 及其实施过程,5. 常规诊断和特殊诊断常规诊断是在设备正常服役条件下进行的诊断,大多数诊断属于这一类型诊断。但在个别情况下,需要创造特殊的服役条件来采集信号,例如,动力机组的起动和停机过程要通过转子的扭振和弯曲振动的几个临界转速采集起动和停机过程中的振动信号,停车对诊断其故障是必须的,所要求的振动信号在常规诊断中是采集不到的,因而需要采用特殊诊断。,第二节 设备故障诊
11、断技术 及其实施过程,6. 简易诊断和精密诊断简易诊断一般由现场作业人员进行。凭着听、摸、看、闻来检查。也可通过便携式简单诊断仪器,如测振仪、声级计、工业内窥镜、红外测温仪等对设备进行人工监测,根据设定的标准或凭人的经验确定设备是否处于正常状态。精密诊断一般要由专业人员来实施。采用先进的传感器采集现场信号,然后采用精密诊断仪器和各种先进分析手段(包括计算机辅助方法、人工智能技术等)进行综合分析,确定故障类型、程度、部位和产生故障的原因,了解故障的发展趋势。,第二节 设备故障诊断技术 及其实施过程,(二)按诊断的物理参数分类振动、声学、温度、污染、无损诊断、压力诊断等,都是按物理参数分类。,表7
12、-2 按诊断的物理参数分类,第二节 设备故障诊断技术 及其实施过程,(三)按照按诊断的直接对象分类各种不同的对象,诊断方法、诊断的技术、诊断的设备都有很大区别,按照机械零件、液压系统、旋转机械、往复机械、工程结构等来进行区分。,表7-3 按直接诊断对象分类,一、诊断参数的选择,( 一)诊断参数选择原则()诊断参数的多能性()诊断参数的灵敏性()诊断参数应呈单值性()诊断参数的稳定性()诊断参数应具有一定的物理意义,应能量化,即可以用数字表示。 旋转机械、金属切削机床常用的诊断参数有:功率、噪音、振动频率及相位、温度以及被切削零件的几何精度和表面粗糙度等。,第三节 设备故障诊断参数,二、诊断参数
13、获得方法的选择,()测试仪器要安装方便,测试手段简单可靠。()测量方法能获得较高的信噪比。()测量方法应尽量采用直接测量。()保证适宜的测量误差值。,第三节 设备故障诊断参数,三、诊断周期的确定,对定期诊断的机器,需要确定其诊断周期。 诊断周期的确定与设备的劣化速度有关。测量周期一般根据机器两次故障之间的平均运行时间确定。为了获得理想的预测能力,在一个平均运行周期内至少应该测量次。如果一旦发现测定数据的变化征兆,就应开始缩短测定周期。例如当高速旋转体异变后可能立即造成机器的故障,则需进行实时监测。,第三节 设备故障诊断参数,四、诊断标准的确定,(1)绝对判断标准(2)相对判断标准(3)类比判断
14、标准,第三节 设备故障诊断参数,()绝对判断标准绝对判断标准是根据对某类机器长期使用、观察、维修与测试后的经验总结,并由企业、行业协会或国家归纳成表格或图表形式,作为一种标准供工程界应用。该标准是在确定了正确的诊断方法后才可制定的标准。使用时必须注意判断标准的制定及适用的范围等,才能选用。 ()相对判断标准 相对判断标准是对机器的同一部位定期测定,并按时间先后进行比较,以正常情况下的值为初始值。根据实测值与该值的倍数比来进行判断的方法。()类比判断标准 类比判断标准是指数台同样规格的机器在相同条件下运行时,通过各台机器的同一部位进行测定和相互比较来掌握其劣化程度的方法。,五、故障诊断信号的采集
15、,电磁检测振动检测声学检测压力检测强度检测温度检测光学检测污染检测性能趋势检测表面形貌检测诊断方式的选择原则:1.对故障最敏感的原则2.综合使用、互为补充的原则3.经济的原则,第三节 设备故障诊断参数,第三节 设备故障诊断常用方法,一、振动测量法组成设备的零、部件以及用于安装设备的基础可认为是弹性系统。物体围绕平衡位置作往复运动称为振动。机械振动在不同程度上反映出设备所处的工作状态。利用振动测量及其对测量结果的分析来识别设备故障是一种常用且有效的故障诊断方法。,(一)振动的分类按能否用确定的时间关系函数来描述,振动分为:确定性振动和随机振动。 1. 随机振动 不能用精确的数学关系式来描述,例如
16、地震。 2. 确定性振动又分为周期振动和非周期振动,周期振动又进一步分为简谐周期振动和复杂周期振动。,第三节 设备故障诊断常用方法,确定性振动就是振动和时间的关系如果能用确定的函数来描述,如果振动和时间的关系如果不能用一个确定的数学函数来描述,那就是叫随机振动。简谐周期振动,就是振动只含有一种频率。而复杂周期振动是这种振动中,含有多种频率的振动,其中任意两个振动频率之比都是有理数。那就是有一个公共的周期,这就是复杂周期振动。,第三节 设备故障诊断常用方法,非周期振动,包括准周期振动和瞬态振动。准周期振动是包含多种频率的振动,其中至少两个的振动频率之比为无理数,除不尽,找不到公共周期。瞬态振动,
17、是可用脉冲函数或衰减函数描述的振动。如爆炸产生的冲击振动就是瞬态振动。,第三节 设备故障诊断常用方法,(二)振动的基本参数振幅、频率和相位是振动的基本参数(振动三要素)。振动完全可以通过这三个参数加以描述。,第三节 设备故障诊断常用方法,在机器振动测量中,有位移、速度、加速度等三种测定方法。从测量灵敏度来看,一般低频以位移、中频以速度、高频以加速度为测量参数居多。,(三)常用的测振传感器,振动测量有:机械方法、光学方法和电测方法。机械方法常用于振动频率低、振幅大、精度不高的场合。光学方法主要用于精密测量和测振传感器的标定。电测方法是应用范围最广的一种。 不管采用哪种测量方法都要采用相应的测振传
18、感器。采用电测法测量振动,传感器的作用是感受被测振动参数,将其转换为电量。主要有三种测振传感器:压电式加速度计、磁电式速度传感器和电涡流位移传感器。,第三节 设备故障诊断常用方法,1.压电加速度传感器,(1)工作原理:某些电介质,当沿着一定的方向对其施力而使之变形时,其内部将发生极化现象,同时在它的两个表面上产生符号相反的电荷;当外力去除后,电介质又重新恢复到不带电的状态。 介质的这种机械能转换为电能的现象即为压电效应。,第三节 设备故障诊断常用方法,(2)压电晶体输出的电荷与振动的加速度成正比。压电式加速度计常见的结构形式为中心压缩式,分为正置压缩型、倒置压缩型、环形剪切型、三角形剪切型等,
19、不管是哪一种,都包括压紧弹簧、质量块、压电晶片和基座等基本部分。其中,压电晶片是加速度计的核心。,第三节 设备故障诊断常用方法,(3)压电式加速度计属于能量转换型传感器。电荷产生不需要外接电源,灵敏度高而且稳定,有比较理想的线性。突出的优点:因为没有移动元件,所以不会因为磨损而造成寿命降低的现象。此外,压电式加速度计使用的上限频率随其固定方式而变。最佳的固定方式是采用钢螺栓固定,只有这种固定方式能达到出厂标示的上限使用频率。,第三节 设备故障诊断常用方法,2. 磁电式速度传感器属于能量转换型传感器。,惯性式磁电速度传感器也不需要外电源。,第三节 设备故障诊断常用方法,(1)原理:利用电磁感应原
20、理,把振动速度转换为线圈中的感应电动势。测振时,将传感器固定或紧压在被测设备的指定位置,磁钢与壳体一起随被测系统的振动而振动,线圈和磁场之间产生相对运动,切割磁力线而产生感应电动势,从而输出与振动速度成正比的电压。它的工作也不需要外加电源,而是直接从被测对象吸取机械能量,并将其转换成电量输出。因此,它也是一种典型的能量转换型传感器。 (2)特点:输出功率大,性能比较稳定;不足就是传感器中存在着机械运动的部件,所以寿命比较短。,第三节 设备故障诊断常用方法,3. 电涡流位移传感器。 电涡流传感器是一种新近研制成功的传感器,它利用导体在交变磁场作用下的电涡流效应,将形变、位移与压力等物理参量的改变
21、转化为阻抗、电感等电磁参量的变化。,涡流位移传感器属于非接触式测量,但需要外电源。,第三节 设备故障诊断常用方法,由于电涡流传感器具有灵敏度高、频响范围宽、测量范围大、抗干扰能力强、不受介质影响、结构简单以及非接触测量等优点,而被广泛地应用于各工业领域,在汽轮发电机组、压缩机、离心机等大型旋转机械的轴振动、轴端窜动以及轴心轨迹监测中都有应用。 此外,电涡流传感器还可用于测厚、测表面粗糙度、无损探伤、测流体压力、转速等一切可转化为位移的物理参量,以及硬度、温度等。,三种传感器的主要特点对比: 1. 压电式加速度传感器和磁电式的速度传感器,都是能量转换型,而电涡流位移传感器,是能量控制型,需要外接
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 设备 故障诊断 要点 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-1548146.html