气体动力学课件.ppt
《气体动力学课件.ppt》由会员分享,可在线阅读,更多相关《气体动力学课件.ppt(75页珍藏版)》请在三一办公上搜索。
1、第二册,热 学,魏民云,物理学的第三次大综合,物理学的第三次大综合是从热学开始的,涉及到宏观与微观两个层次 .,宏观理论热力学的两大基本定律: 第一定律, 即能量守恒定律; 第二定律, 即熵增加定律 . 科学家进一步追根问底, 企图从分子和原子的微观层次上来说明物理规律, 气体分子动理论应运而生 . 玻尔兹曼与吉布斯发展了经典统计力学 .,热力学与统计物理的发展, 加强了物理学与化学的联系, 建立了物理化学这一门交叉科学 .,研究对象,热运动 : 构成宏观物体的大量微观粒子的永不休止的无规运动 .,热现象 : 与温度有关的物理性质的变化。,单个分子 无序、具有偶然性、遵循力学规律.,整体(大量
2、分子) 服从统计规律 .,宏观量:表示大量分子集体特征的物理量(可直接测量), 如 等 .,微观量:描述个别分子运动状态的物理量(不可直接测量),如分子的 等 .,宏观量,微观量,研究方法,1. 热力学 宏观描述,实验经验总结, 给出宏观物体热现象的规律,从能量观点出发,分析研究物态变化过程中热功转换的关系和条件 .,1)具有可靠性; 2)知其然而不知其所以然; 3)应用宏观参量 .,2. 气体动理论 微观描述,研究大量数目的热运动的粒子系统,应用模型假设和统计方法 .,1)揭示宏观现象的本质; 2)有局限性,与实际有偏差,不可任意推广 .,2. 微观量,热学的基本概念,1. 宏观量,说明:,
3、宏观描述和微观描述是描述同一物理现象的两种方法,因此宏观量和微观量间有一定的内在联系。,宏观量总是微观量的统计平均值。,如气体的压力是单位时间内全部气体分子与单位面积器壁发生碰撞所引起的平均冲力。,3.平衡态,系统从某一平衡态,经历一系列的平衡态,达到另一平衡态的过程。,4.平衡过程,在pV 图上,点表示平衡态;,系统在不受外界影响的条件下,各部分的宏观物理量(p、V、T )不随时间变化的状态。,热学的基本概念,B,A,a (P1V1T1),b (P2V2T2),A,B,图a,图b,说明:,不受外界影响是指热力学系统与外界无任何形式的相互作用。,如互不作功,互不传热等。,一条曲线表示一个平衡过
4、程。,5. 热平衡态,热学的基本概念,热学中,把所研究的物体或物体系称作热力学系统。,热力学系统一般由大量的分子和原子组成。,热力学系统以外的物体统称外界。,6. 热力学系统和外界,A,B,被导能板隔开(或直接接触)的两个系统不可能任意地各自达到自己的任一平衡态而是最终要达到一个共同的平衡态。这种平衡态称作热平衡态。,气体分子动理论,第一章 气体动理论,1.1 气体动理论的基本概念,1.2 理想气体状态方程,1.3 理想气体的压强,1.6 麦克斯韦速率分布律,1.7 玻耳兹曼分布律,1.5 能量均分定理 理想气体的内能,1.8 气体分子的平均自由程,1.4 温度的微观意义,第一章 气体动理论,
5、1.1 气体动理论的基本概念,1.2 理想气体状态方程,1.3 理想气体的压强,1.6 麦克斯韦速率分布律,1.7 玻耳兹曼分布律,1.5 能量均分定理 理想气体的内能,1.8 气体分子的平均自由程,1.4 温度的微观意义,1.1 气体动理论的基本概念,1.2 理想气体状态方程,1.3 理想气体的压强,1.1 气体动理学的基本概念,从分子、原子的运动和它们间的相互作用出发,研究热现象的规律,构成热现象的微观理论。称作,气体动理论是统计物理学的一个方面,研究方法不同于力学,虽然每个分子仍遵循力学规律,但大量分子的整体却遵循着自己独特的热运动统计规律。,一、统计物理学,1. 基本出发点,(1)一切
6、宏观物体都是由大量分子(原子)组成。,(3)分子与分子之间存在相互作用。,(2)分子(原子)做永恒的杂乱无章的热运动。,r 分子间距,f 分子间相互作用力,引力,斥力,一、统计物理学,2.通常情况下一般气体分子热运动的统计规律,(1)分子数密度 n 约为 1019 个/cm3 ;,(2)分子热运动的平均速率 约500m/s ;,(3)分子的平均碰撞频率 约为1010 次/秒 。,3. 平衡态时气体分子的空间分布,分子的位置在容器内空间任何一点的机会均等。所以,沿空间各方向运动的分子数目相等。,(1)分子按空间位置的分布是均匀的(忽略重力影响)。,分子的速度指向任何方向的机会均等。即,(2)分子
7、速度按方向的分布是均匀的。,二、气体动理论的研究对象,大量分子原子组成的热力学系统。,三、气体动理论的任务,从分子热运动观点出发,采用统计学的方法,求出大量分子微观物理量的统计平均值,并找出微观量与宏观物理量的关系。,四、气体的状态参量(宏观量),1. 体积V :,2. 压强P :,3. 温度T :,表示物体冷热程度的物理量。,气体分子所能达到的空间体积;,容器壁单位面积上所受的正压力;,压力的实质是大量气体分子与器壁碰撞的宏观表现。,温度实质是气体分子无规则热运动剧烈程度的量度。,四、气体的状态参量(宏观量),3. 温度T :,表示物体冷热程度的物理量。,(1)摄(摄修斯)氏温标 ,表示温度
8、的数值称温标。,(2)热力学温标(开尔文氏温标、绝对温标)K,以水的冰点为0,沸点为100。三相点温度为0.01。,水的三相点温度:,水、冰、水汽共存而达到平衡态时的温度。,水的冰点为273.15K,三相点温度为273.16K。,说明:,(3)热力学温标与摄氏温标关系,T = 273.15 t,温标:,t = T 273.15,2. 理想气体中分子的微观假设,一般气体在温度(比室温)不太低、压强不太大的情况下,服从三个气体实验规律(玻意耳、盖吕萨克、查理定律),可近似看成理想气体。,分子沿直线自由飞行,分子间的碰撞为完全弹性碰撞,能量和动量均守恒。,分子间距远远大于其线度(10 倍以上),可以
9、不考虑它的形状,将分子假设为球形(质点)。,(1)小球(质点)假设,分子间无引力、无势能,除碰撞外无其它相互作用。,(2)分子力假设,(3)弹性假设,理想气体模型,常温、低压下许多实际气体可看作理想气体。,注:,1. 理想气体,(2)标准状态下,一摩尔物质具有体积22.4升。,六、 标准状态,1atm = 1.013105 Pa = 760mmHg = 1.013 bar,(1)一个标准大气压,1巴=0.986923标准大气压,式中Pa(帕斯卡)是国际单位制的压强单位;,1Pa=1Nm2,式中bar(巴)是气象学压强单位;,(1)压力为一个标准大气压;,(2)温度为0(273.15K)。,说明
10、:,(2)摄氏温度t 与热力学温度T 之间的关系,t = T 273.15 或 T = 273.15 t。,(克拉珀龙方程),理想气体状态方程,一理想气体状态方程(1),式中:,R:普适气体恒量(摩尔气体恒量),M:气体的摩尔质量(每摩尔物质的质量)。,m :气体的质量。,说明:,1. 方程成立条件:理想气体,平衡态。,2. 方程为实验规律。,二、几个常量,k =R NA=1.381023 JK1,NA=6.021023 mol1,氧气(O2):M = 32 103;氢气(H2):M = 2 103;,1.摩尔质量M (每摩尔物质的质量),氮气(N2):M = 28 103;氩气(Ar):M
11、= 40 103。,单位: kgmol1,3. 阿伏伽德罗常数 NA,1mol 任何气体所含分子数。,4.玻耳兹曼常量 K,2. 摩尔数 ,(常用),三、理想气体状态方程(2),证明:,(1),(2),式中,表示气体分子数密度。,一、理想气体中分子的微观假设,分子沿直线自由飞行,分子间的碰撞为完全弹性碰撞,能量和动量均守恒。,分子间距远远大于其线度( 10 倍以上 ) ,可以不考虑它的形状,将分子假设为球形(质点)。,(1)小球(质点)假设,分子间除碰撞外无其它相互作用,无引力和势能。,(2)分子力假设,(3)弹性假设,(4)忽略重力。,1.3 理想气体的压强,(5)分子的运动尊从经典力学规律
12、。,3)每个分子指向任何方向机会是一样的,既分子速度按方向分布是均匀的,或者说各方向运动概率均等。,一、热动平衡的统计规律假设(平衡态 ,若忽略重力影响),2)分子按位置的分布是均匀的 既分子数密度应到处相同。,大量分子对器壁碰撞的总效果 : 恒定的、持续的力的作用 .,单个分子对器壁碰撞特性 : 偶然性 、不连续性.,1)每个分子运动速度不相同,而且通过碰撞不断改变。,各方向运动概率均等,各方向运动概率均等,分子运动速度,即: 所有分子速度分量平方的平均值相等。,设 边长分别为 x、y 及 z 的长方体中有 N 个全同的质量为 m 的气体分子,计算 壁面所受压强 .,二、理想气体压强公式,分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 气体 动力学 课件
链接地址:https://www.31ppt.com/p-1521328.html