差分方程 基础知识 课件.ppt
《差分方程 基础知识 课件.ppt》由会员分享,可在线阅读,更多相关《差分方程 基础知识 课件.ppt(28页珍藏版)》请在三一办公上搜索。
1、差 分 方 程(1) 基础知识,1,t课件,一、差分,二、差分方程的概念,三、一阶常系数线性差分方程,四、二阶常系数线性差分方程,2,t课件,一、差分,微分方程是自变量连续取值的问题, 但在很多实际问题中, 有些变量不是连续取值的. 例如, 经济变量收入、储蓄等都是时间序列, 自变量 t 取值为0, 1, 2, , 数学上把这种变量称为离散型变量. 通常用差商来描述因变量对自变量的变化速度.,定义1 设函数 y = f (x), 记为 yx, 则差,yx+1 yx,称为函数 yx 的一阶差分, 记为yx, 即,yx = yx+1 yx.,3,t课件,(yx) = yx+1 yx = (yx+2
2、 yx+1) (yx+1 yx),= yx+2 2 yx+1 + yx,为二阶差分, 记为2 yx, 即,3yx = (2yx),同样可定义三阶差分3yx, 四阶差分4yx, 即,4yx = (3yx) .,2 yx = (yx) = yx+2 2 yx+1 + yx,4,t课件,例1 求(x3), 2(x3), 3(x3), 4(x3).,解 (x3) = (x + 1)3 x3 = 3x2 + 3x + 1,2(x3) = (3x2 + 3x + 1),= 3(x + 1)2 + 3(x + 1) + 1 (3x2 + 3x + 1),= 6x + 6,3(x3) = (6x + 6) =
3、 6(x + 1) + 6 (6x + 6),= 6,4(x3) = (6) 6 = 0.,5,t课件,二、差分方程的概念,定义2 含有自变量、未知函数及其差分的方程, 称为差分方程.,差分方程的一般形式为,F(x, yx, yx, , n yx) = 0. (1),差分方程中可以不含自变量 x 和未知函数 yx, 但必须含有差分.,式(1)中, 当 n = 1时, 称为一阶差分方程;当n = 2时, 称为二阶差分方程.,6,t课件,例2 将差分方程,2yx + 2yx = 0,表示成不含差分的形式.,解 yx = yx+1 yx , 2yx = yx+2 2yx+1 + yx ,代入得,yx
4、+2 yx = 0.,由此可以看出, 差分方程能化为含有某些不同下标的整标函数的方程.,7,t课件,定义3 含有未知函数几个时期值的符号的方程, 称为差分方程.,其一般形式为,G(x, yx, yx+1, , yx+n) = 0. (2),定义3中要求yx, yx+1, , yx+n不少于两个.,例如, yx+2 + yx+1 = 0为差分方程, yx = x不是差分方程.,差分方程式(2)中, 未知函数下标的最大差数为 n, 则称差分方程为n 阶差分方程.,8,t课件,定义4 如果一个函数代入差分后, 方程两边恒等, 则称此函数为该差分方程的解.,例3 验证函数 yx = 2x + 1是差分
5、方程 yx+1 yx = 2的解.,解 yx+1 = 2(x + 1) + 1 = 2x +3,yx+1 yx = 2x + 3 (2x +1) = 2,所以yx = 2x + 1是差分方程 yx+1 yx = 2的解.,定义5 差分方程的解中含有任意常数, 且任意常数的个数与差分方程的阶数相等, 这样的解称为差分方程的通,解.,9,t课件,三、一阶常系数线性差分方程,一阶常系数线性差分方程的一般形式为,yx+1 ayx = f (x). (3),其中 a 为不等于零的常数.,称为齐次差分方程; 当 f (x) 0时, 称为非齐次差分方程.,当 f (x) = 0 时, 即,yx+1 ayx
6、= 0 (4),10,t课件,先求齐次差分方程 yx+1 ayx = 0的解,设 y0 已知, 代入方程可知,y1 = ay0,y2 = a2y0, ,yx = axy0,令y0 = C, 则得齐次差分方程的通解为,yx = Cax. (5),11,t课件,例4 求差分方程 yx+1 + 2yx = 0的通解.,解 这里 a = 2, 由公式(5)得, 通解为,yx = C(2)x .,12,t课件,定理 设 y0*是非齐次差分方程(3)对应的齐次差分方程(4)的通解,再讨论非齐次差分方程 yx+1 ayx = f (x)解的结构,是(3)的一个特解, 则,程(3)的通解.,是方,下面用待定系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 差分方程 基础知识 课件 方程
链接地址:https://www.31ppt.com/p-1518506.html