采煤机滚筒调高液压系统的构建课件.ppt
《采煤机滚筒调高液压系统的构建课件.ppt》由会员分享,可在线阅读,更多相关《采煤机滚筒调高液压系统的构建课件.ppt(251页珍藏版)》请在三一办公上搜索。
1、学习情境采煤机调高液压系统的构建,任务1 调高液压系统液压泵的选用,任务2 液压缸的选用,任务3 方向控制阀的选用,任务 采煤机调高液压系统的组建,主要内容,任务1 调高系统液压泵的选用,能力目标,知识目标,掌握液压动力元件(齿轮泵、叶片泵、柱塞泵)的工作原理及特点。掌握液压动力元件主要性能参数。,能正确选用液压泵。,教学目标,任务导入,图2-1所示为滚筒式采煤机调高装置,它是依靠液动力驱动调高油缸。对滚筒式采煤机来说,滚筒高度的调节是采煤机适应煤层的厚度变化所必须具有的动作。哪种动力元件才能较好地满足滚筒高度的调节要求呢?,图2-1 滚筒式采煤机调高装置,任务分析,相关知识,一、液压泵概述,
2、1.液压泵的工作原理及特点,液压泵是液压传动系统中的能量转换元件,液压泵由原动机驱动,把输入的机械能转换为油液的压力能,再以压力、流量的形式输入到系统中去,它是液压传动的心脏,也是液压系统的动力源。 在液压系统中,液压泵是容积式的,依靠容积变化进行工作。,液压泵都是依靠密封容积变化的原理来进行工作的,故一般称为容积式液压泵,图2-2所示的是一单柱塞液压泵的工作原理图,图中柱塞2装在缸体3中形成一个密封容积a,柱塞在弹簧4的作用下始终压紧在偏心轮1上。原动机驱动偏心轮1旋转使柱塞2作往复运动,使密封容积a的大小发生周期性的交替变化。当a有小变大时就形成部分真空,使油箱中油液在大气压作用下,经吸油
3、管顶开单向阀6进入油箱a而实现吸油;反之,当a由大变小时,a腔中吸满的油液将顶开单向阀5流入系统而实现压油。这样液压泵就将原动机输入的机械能转换成液体的压力能,原动机驱动偏心轮不断旋转,液压泵就不断地吸油和压油。,()液压泵的工作原理,图2-2 液压泵工作原理图,()液压泵的特点,2022/12/1,容积式液压泵中的油腔处于吸油时称为吸油腔。吸油腔的压力决定于吸油高度和吸油管路的阻力,吸油高度过高或吸油管路阻力太大,会使吸油腔真空度过高而影响液压泵的自吸能力;油腔处于压油时称为压油腔,压油腔的压力则取决于外负载和排油管路的压力损失,从理论上讲排油压力与液压泵的流量无关。 容积式液压泵排油的理论
4、流量取决于液压泵的有关几何尺寸和转速,而与排油压力无关。但排油压力会影响泵的内泄露和油液的压缩量,从而影响泵的实际输出流量,所以液压泵的实际输出流量随排油压力的升高而降低。,分类:,按结构分:齿轮泵、叶片泵、柱塞泵;,按排液量是否可调分:变量泵和定量泵;,按泵的吸、排液口是否可以互换分:单向泵和双向泵;,液压泵的图形符号:,(二)液压泵的主要性能参数,1.液压泵的压力,2.排量和流量,(2-1),(2-2),泄漏量是通过液压泵中各个运动副的间隙所泄漏的液体体积。泄漏分为内泄漏和外泄漏两部分。,影响泄漏量的因素:,运动副间隙;工作压力;液体粘度。,注意:实际流量要受工作压力的影响。,2.功率和效
5、率,液压泵的功率,(2-3),(2-4),2022/12/1,式中 p液压泵吸、压油口之间的压力差,N/m2; q液压泵的实际输出流量,m3/s; P为液压泵的输出功率,W。,在实际的计算中,若油箱通大气,液压泵吸、压油的压力差往往用液压泵出口压力p代入。,液压泵的功率损失,液压泵的功率损失有容积损失和机械损失两部分。,(2-5),因此液压泵的实际输出流量q为,(2-6),式中 V液压泵的实际排量,m3/r; Vl液压泵的理论排量,m3/r; n液压泵的转速r/s。 液压泵的容积效率随着液压泵工作压力的增大而减小,且随液压泵的结构类型不同而异,但恒小于1。,(2-7),液压泵的总效率,由式(2
6、-8)可知,液压泵的总效率等于其容积效率与机械效率的乘积,所以液压泵的输入功率也可写成:,液压泵的总效率是指液压泵的实际输出功率与其输入功率的比值,即:,(2-8),其中 为理论输入转矩Tl。,(2-9),液压泵的各个参数和压力之间的关系如图2-3所示。,图2-3 液压泵的特性曲线,二、齿轮泵,齿轮泵是液压系统中广泛采用的一种液压泵,其主要特点是结构简单,制造方便,价格低廉,体积小,重量轻,自吸性能好,对油液污染不敏感,工作可靠;其主要缺点是流量和压力脉动大,噪声大,排量不可调。它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例
7、来剖析齿轮泵。,1.齿轮泵的工作原理和结构,齿轮泵的工作原理如图2-4、图2-5所示,它是分离三片式结构,三片是指泵盖4,8和泵体7。泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。,图2-4 外啮合型齿轮泵工作原理,图2-5 CBB齿轮泵的结构1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泄油孔
8、15-从动轴 16-泻油槽 17-定位销,2022/12/1,CB-B齿轮泵的结构如图2-5所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密
9、封容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图2-5。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为0.0250.04mm,大流量泵为0.040.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.130.16mm。,2022/12/1,为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧
10、螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。,2.齿轮泵的流量计算,齿轮泵的排量V相当于一对齿轮所有齿谷容积之和,假如齿谷容积大致等于轮齿的体积,那么齿轮泵的排量等于一个齿轮的齿谷容积和轮齿容积体积的总和,即相当于以有效齿高(h=2m)和齿宽构成的平面所扫过的环形体积,即:,(2-10),实际上齿谷的容积要比轮齿的体积稍大,故上式中的常以3.33代替,则式(2-10)可写成:,齿轮泵的流量q(l/min)为:,(2-11),(2-12),式中
11、 n齿轮泵转速,r/min; v齿轮泵的容积效率。 实际上齿轮泵的输油量是有脉动的,故式(2-12)所表示的是泵的平均输流量。,3.齿轮泵的在结构上存在的问题,(1)齿轮泵的困油问题,图2-6齿轮泵的困油现象,2022/12/1,齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积中见图2-6(a),齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时见图2-6(b),封闭容积为最小,齿轮再继续转动时,
12、封闭容积又逐渐增大,直到图2-6(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。,为了消除困油现象,在CB-B型齿轮泵的泵盖上铣出两个困油卸荷凹槽,其几何关系如图2-7所示。卸荷槽的位置应该使困油腔由大变小时,能通过卸荷
13、槽与压油腔相通,而当困油腔由小变大时,能通过另一卸荷槽与吸油腔相通。两卸荷槽之间的距离为a,必须保证在任何时候都不能使压油腔和吸油腔互通。,图2-7齿轮泵的困油卸荷槽图,2022/12/1,按上述对称开的卸荷槽,当困油封闭腔由大变至最小时(图2-6),由于油液不易从即将关闭的缝隙中挤出,故封闭油压仍将高于压油腔压力;齿轮继续转动,当封闭腔和吸油腔相通的瞬间,高压油又突然和吸油腔的低压油相接触,会引起冲击和噪声。于是CB-B型齿轮泵将卸荷槽的位置整个向吸油腔侧平移了一个距离。这时封闭腔只有在由小变至最大时才和压油腔断开,油压没有突变,封闭腔和吸油腔接通时,封闭腔不会出现真空也没有压力冲击,这样改
14、进后,使齿轮泵的振动和噪声得到了进一步改善。,(2)径向不平衡力,齿轮泵工作时,在齿轮和轴承上承受径向液压力的作用。如图2-8所示,泵的右侧为吸油腔,左侧为压油腔。在压油腔内有液压力作用于齿轮上,沿着齿顶的泄漏油,具有大小不等的压力,就是齿轮和轴承受到的径向不平衡力。液压力越高,这个不平衡力就越大,其结果不仅加速了轴承的磨损,降低了轴承的寿命,甚至使轴变形,造成齿顶和泵体内壁的摩擦等。为了解决径向力不平衡问题,在有些齿轮泵上,采用开压力平衡槽的办法来消除径向不平衡力,但这将使泄漏增大,容积效率降低等。CB-B型齿轮泵则采用缩小压油腔,以减少液压力对齿顶部分的作用面积来减小径向不平衡力,所以泵的
15、压油口孔径比吸油口孔径要小。,图2-8齿轮泵的径向不平衡力,(3)齿轮泵的泄漏,在液压泵中,运动件间是靠微小间隙密封的,这些微小间隙从运动学上开成摩擦副,而高压腔的油液通过间隙向低压腔泄漏是不可避免的;齿轮泵压油腔的压力油可通过三条途径泄漏到吸油腔去;一是通过齿轮啮合线处的间隙(齿侧间隙);二是通过体定子环内孔和齿顶间隙的径向间隙(齿顶间隙);三是通过齿轮两端面和侧板间的间隙(端面间隙)。在这三类间隙中,端面间隙的泄漏量最大,压力越高,由间隙泄漏的液压油液就愈多,因此为了实现齿轮泵的高压化,为了提高齿轮泵的压力和容积效率,需要从结构上来采取措施,对端面间隙进行自动补偿。,4.高压齿轮泵的特点,
16、上述齿轮泵由于泄漏大(主要是端面泄漏,约占总泄漏量的70%80%),且存在径向不平衡力,故压力不易提高。高压齿轮泵主要是针对上述问题采取了一些措施,如尽量减小径向不平衡力和提高轴与轴承的刚度;对泄漏量最大处的端面间隙,采用了自动补偿装置等。下面对端面间隙的补偿装置作简单介绍。,(1)浮动轴套式 图2-9(a)是浮动轴套式的间隙补偿装置。它利用泵的出口压力油,引入齿轮轴上的浮动轴套1的外侧A腔,在液体压力作用下,使轴套紧贴齿轮3的侧面,因而可以消除间隙并可补偿齿轮侧面和轴套间的磨损量。在泵起动时,靠弹簧4来产生预紧力,保证了轴向间隙的密封。,图2-9 端面间隙补偿装置示意图,2022/12/1,
17、(2)浮动侧板式 浮动侧板式补偿装置的工作原理与浮动轴套式基本相似,它也是利用泵的出口压力油引到浮动侧板1的背面见图2-9(b),使之紧贴于齿轮2的端面来补偿间隙。起动时,浮动侧板靠密封圈来产生预紧力。 (3)挠性侧板式 图2-9(c)是挠性侧板式间隙补偿装置,它是利用泵的出口压力油引到侧板的背面后,靠侧板自身的变形来补偿端面间隙的,侧板的厚度较薄,内侧面要耐磨(如烧结有0.50.7mm的磷青铜),这种结构采取一定措施后,易使侧板外侧面的压力分布大体上和齿轮侧面的压力分布相适应。,5.内啮合齿轮泵,内啮合齿轮泵的工作原理也是利用齿间密封容积的变化来实现吸油压油的。图3-9所示是内啮合齿轮泵的工
18、作原理图。,图2-10所示是内啮合齿轮泵的工作原理图,2022/12/1,它是由配油盘(前、后盖)、外转子(从动轮)和偏心安置在泵体内的内转子(主动轮)等组成。内、外转子相差一齿,图中内转子为六齿,外转子为七齿,由于内外转子是多齿啮合,这就形成了若干密封容积。当内转子围绕中心O1旋转时,带动外转子绕外转子中心O2作同向旋转。这时,由内转子齿顶A1和外转子齿谷A2间形成的密封容积C(图中阴线部分),随着转子的转动密封容积就逐渐扩大,于是就形成局部真空,油液从配油窗口b被吸入密封腔,至A1、A2位置时封闭容积最大,这时吸油完毕。当转子继续旋转时,充满油液的密封容积便逐渐减小,油液受挤压,于是通过另
19、一配油窗口a将油排出,至内转子的另一齿全部和外转子的齿凹A2全部啮合时,压油完毕,内转子每转一周,由内转子齿顶和外转子齿谷所构成的每个密封容积,完成吸、压油各一次,当内转子连续转动时,即完成了液压泵的吸排油工作。,2022/12/1,内啮合齿轮泵的外转子齿形是圆弧,内转子齿形为短幅外摆线的等距线,故又称为内啮合摆线齿轮泵,也叫转子泵。 内啮合齿轮泵有许多优点,如结构紧凑,体积小,零件少,转速可高达10000r/mim,运动平稳,噪声低,容积效率较高等。缺点是流量脉动大,转子的制造工艺复杂等,目前已采用粉末冶金压制成型。随着工业技术的发展,摆线齿轮泵的应用将会愈来愈广泛内啮合齿轮泵可正、反转,可
20、作液压马达用。,三、叶片泵,叶片泵的结构较齿轮泵复杂,但其工作压力较高,且流量脉动小,工作平稳,噪声较小,寿命较长。所以它被广泛应用于机械制造中的专用机床、自动线等中低液压系统中,但其结构复杂,吸油特性不太好,对油液的污染也比较敏感。 根据各密封工作容积在转子旋转一周吸、排油液次数的不同,叶片泵分为两类,即完成一次吸、排油液的单作用叶片泵和完成两次吸、排油液的双作用叶片泵。单作用叶片泵多为变量泵,工作压力最大为7.0Mpa,双作用叶片泵均为定量泵,一般最大工作压力亦为7.0MPa,结构经改进的高压叶片泵最大的工作压力可达16.021.0MPa,1.单叶片泵,(1)单叶片泵的工作原理,图2-11
21、 单作用叶片泵的工作原理1-转子2定子3叶片,2022/12/1,单作用叶片泵的工作原理如图2-11所示,单作用叶片泵由转子1、定子2、叶片3和端盖等组成。定子具有圆柱形内表面,定子和转子间有偏心距。叶片装在转子槽中,并可在槽内滑动,当转子回转时,由于离心力的作用,使叶片紧靠在定子内壁,这样在钉子、转子、叶片和两侧配油盘间就形成若干个密封的工作空间,当转子按图示的方向回转时,在图的右部,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这是吸油腔。在图的左部,叶片被定子内壁逐渐压进槽内,工作空间逐渐缩小,将油液从压油口压出,这是压油腔,在吸油腔和压油腔之间,有一段封油区,把吸油腔和压油腔隔
22、开,这种叶片泵在转子每转一周,每个工作空间完成一次吸油和压油,因此称为单作用叶片泵。转子不停地旋转,泵就不断地吸油和排油。,(2)单叶片泵的排量和流量计算,图2-12单作用叶片泵排量计算简图,单作用叶片泵的排量为各工作容积在主轴旋转一周时所排出的液体的总和,如图2-12所示,两个叶片形成的一个工作容积V近似地等于扇形体积V1和V2之差,即:,(2-13),因此,单作用叶片泵的排量为:,理论流量和实际流量分别为:,(2-15),(2-14),(2-16),(3)单叶片泵的结构特点,2.双作用叶片泵,(1)双作用叶片泵的工作原理,图2-13双作用叶片泵的工作原理定子2转子3叶片,双作用叶片泵的工作
23、原理如图2-13所示,泵也是由定子1、转子2、叶片3和配油盘(图中未画出)等组成。转子和定子中心重合,定子内表面近似为椭圆柱形,该椭圆形由两段长半径R、两段短半径r和四段过渡曲线所组成。当转子转动时,叶片在离心力和(建压后)根部压力油的作用下,在转子槽内作径向移动而压向定子内表,由叶片、定子的内表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子内壁逐渐压进槽内,密封空间容积变小,将油液从压油口压出,因而,当转子每转一周,
24、每个工作空间要完成两次吸油和压油,所以称之为双作用叶片泵,这种叶片泵由于有两个吸油腔和两个压油腔,并且各自的中心夹角是对称的,所以作用在转子上的油液压力相互平衡,因此双作用叶片泵又称为卸荷式叶片泵,为了要使径向力完全平衡,密封空间数(即叶片数)应当是双数。,(2)双作用叶片泵的排量和流量计算,图2-14双作用叶片泵排量计算简图,双作用叶片泵的排量计算简图如图2-14所示,由于转子在转一周的过程中,每个密封空间完成两次吸油和压油,所以当定子的大圆弧半径为R,小圆弧半径为r、定子宽度为B,两叶片间的夹角为 弧度时,每个密封容积排出的油液体积为半径为R和r、扇形角为、厚度为B的两扇形体积之差的两倍,
25、因而在不考虑叶片的厚度和倾角时双作用叶片泵的排量为:,(2-17),一般在双作用叶片泵中,叶片底部全部接通压力油腔,因而叶片在槽中作往复运动时,叶片槽底部的吸油和压油不能补偿由于叶片厚度所造成的排量减小,为此双作用叶片泵当叶片厚度为b、叶片安放的倾角为时的排量为:,(2-18),所以当双作用叶片泵的转数为n,泵的容积效率为v时,泵的理论流量和实际输出流量分别为:,(2-19),(2-20),双作用叶片泵如不考虑叶片厚度,泵的输出流量是均匀的,但实际叶片是有厚度的,长半径圆弧和短半径圆弧也不可能完全同心,尤其是叶片底部槽与压油腔相通,因此泵的输出流量将出现微小的脉动,但其脉动率较其他形式的泵(螺
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 采煤 滚筒 液压 系统 构建 课件
链接地址:https://www.31ppt.com/p-1490693.html