电力变压器试验课件.ppt
《电力变压器试验课件.ppt》由会员分享,可在线阅读,更多相关《电力变压器试验课件.ppt(120页珍藏版)》请在三一办公上搜索。
1、2022/12/1,1,变压器试验,变压器出厂试验1) 例行试验2) 型式试验3) 特殊试验,2022/12/1,2,例行试验 每一台变压器均承受的试验1)电压比测量及电压矢量关系校定 2)绕组电阻测量3)绝缘电阻,吸收比及极化指数 介质损耗功率因数测量4)空载电流及空载损耗测量 5)短路阻抗及负载损耗测量6)绝缘例行试验7)有载分接开关试验 8)变压器油试验,2022/12/1,3,型式试验 除出厂试验之外,为验证变压器是否与规定的技术条件符合所进行的具有代表性的试验。(如果一台变压器的额定及结构与该厂的其他变压器完全一致,则认为可以代表。)1)温升试验2)绝缘型式试验3) 油箱机械强度试验
2、,2022/12/1,4,特殊试验 除出厂试验和型式试验之外,经制造厂与使用部门商定的试验,它使用于一台或几台特定合同上的变压器。1) 绝缘特殊试验2)绕组对地和绕组间电容的测量3)暂态电压传输特性测定4)三相变压器零序阻抗测量5)短路承受能力试验6)声级测定7)空载电流谐波的测量,2022/12/1,5,8)风扇和油泵电机所吸收功率的测量 9)长时间空载试验 10)油流静电测量 11)转动油泵时局部放电测量 国家电网公司要求新增项目: 1)低电压空载试验(380V电压下的空载电流和空载损耗测量) 2)低电压下的短路阻抗测量 3)绕组变形测量(频率响应法) 4)1.1倍额定电流发热试验 5)无
3、线电干扰测量,2022/12/1,6,变压器变压比及连接组标号测量 变压比及连接组标号测量是变压器的例行试验项目,不仅在变压器出厂试验时要进行,而且在变压器安装现场厂投入运行前也要进行电压比和连接组标号测量。这两项测量项目是变压器并列运行的必要条件。 电压比测量的目的:保证绕组各个分接的电压比在标准或合同技术要求的电压比范围内。确定并联线圈或并联线段(例如分接线段)的匝数相同。判定绕组各个分接的引线和分接开关的连线是否正确。,2022/12/1,7,执行标准:GB1094.1-1996. JB/T501-2006,GB50150标准:额定分接上变比误差在0.5%范围内,其它分接误差应在变压器阻
4、抗值电压值(%)的1/10以内,但不的超过1% 变压比及连接组标号测量应 分别在变压器出厂试验,工艺过程中半成品(插铁、器身试验)进行测量。尤其在半成品试验中更要认真测试和严格控制。 对于带有并联支路的绕组在插铁后试验还 要进行等匝试验,确保并联支路匝数相等。,2022/12/1,8,电压比和连接组标号测量方法 双电压表法:一般从高压侧输入适当幅值单相电压分别测量高低压电压,并计算变比K=U1/U2,与标准变比的偏差。使用仪表应采用0.1级高内阻的数字电压表。 连接组标号测量采用三相电源,在高压侧施加适当幅值三相电压(一般取380V)。高、低压任一相同名端相连接,分别测量高低压各个端子间的电压
5、,作出矢量图判断出连机组标号。 变比电桥法:标准电压互感器式电压比电桥、电阻分压器式电压比电桥。变比电桥精度0.1级,同时电桥应具备连接组标号测量功能。 试验时应注意接线是否正确,接触是否良好。三绕组变压器测量高-中、高-低、中-低压间各个分接的变压比,双绕组变压器测量高-低压间各个分接的变压比。,2022/12/1,9,工艺过程中的试验铁心套装线圈后:调压圈或线圈的调压段必须按照图纸预连接,逐相测量。(单线测量)电压比应符合线圈的匝数比。对有并联绕组的变压器进行等匝试验。带有稳定绕组变压器稳定绕组对其它绕组变比三相必须平衡。引线焊接后的器身试验逐个分接测量变压比,同时进行连接组标号的测量。,
6、2022/12/1,10,现场交接试验 试验使用的变比测试仪精度和灵敏度均不应低于0.2级。 电压比计算的比值应按铭牌电压计算。三绕组变压器至少在两对上分别测量,有分 接绕组应在每个分接上分别测量。 额定分接上变比误差在0.5%范围内,其它分接误差应在1%内,协议有要求者,应按协议要求。矢量关系(接线组别)应符合铭牌数据。 有载开关在变比测量时使用电动操作。,2022/12/1,11,变比试验中常见问题1 在工序过程中(插铁、器身试验)经常遇到在变比试验中会出现异常,如发生变比超差和无法测量等问题,应首先检查试验接线是否正确,试验仪器是否正常。对线圈出现短路环时应特别注意,不应使仪器长时间经受
7、大电流冲击,防止仪器损坏。当变比误差超过标准时,在排除测量接线和仪器原因,根据线圈匝数和误差百分数,判断其线圈是多匝或少匝。必要时可以正串或反串临时匝来确定错匝数。有些时候虽然变比测量误差不超标,但三相平衡度相差较大时,也应查明原因找出引起误差的确切原因。判断误差较大相的线圈,错匝的多少和错匝的部位。,2022/12/1,12,变比试验中常见问题2 变比试验在出厂试验时,无载调压变压器经常发现的问题有开关的档位与开关指示的位置不一至,变比测量时误差将会很大。有时虽然开关指示在档位上,但开关内部触头未接通,会造成变比无法测量。变比测量时转动开关,测量的变比无变化,内部开关与外部操作杆未连接好,开
8、关操作时指示虽转动但开关不转动。,2022/12/1,13,变压器绕组直流电阻测量 直流电阻测量的目的:1)绕组导线连接处的焊接和机械连接是否良好2)引线与套管、引线与分接开关的连接是否良好3)引线与引线的焊接和机械连接是否良好4)导线的规格、电阻率是否符合要求5)各相绕组的电阻是否平衡6)变压器绕组的温升是根据绕组在温升试验前的冷态电阻和温升试验后断开电源瞬间的热态电阻计算得到的。,2022/12/1,14,绕组直流电阻测量标准:GB6451-2008.容量小于1600kVA变压器 绕组三相不平衡率:相电阻为4%。线电阻为2%容量大于1600kVA变压器 绕组三相不平衡率:相电阻为2%。线电
9、阻为1%。 直流电阻测量的方法 变压器直流电阻测量按JB/T501-91标准有两种测量方法,电桥法和伏、安法(变压器直流电阻测试仪) 试验仪器应使用精度为0.2级以上的直流电阻测试仪,根据变压器容量大小及电阻大小,选用适当的电流档测量所有绕组的直流电阻。,2022/12/1,15,有分接绕组应测量所有分接直流电阻。对有中性点引出的绕组应测量其相电阻,无中性点引出的测量线电阻。快速测量直流电阻的原理与方法变压器绕组具有很大的电感和很小的电阻,尤其是其容量越大,绕组的电感就越大,而电阻越小,因而其时间常数较大。测量绕组电阻时,当接通直流电源后,充电电流要经过一个暂态过程才能达到稳定值,快速准确测量
10、直流电阻是很重要的问题。变压器绕组电阻测量的等效电路原理见图5-1,充电电流变化图见图5-2,其中Lx和Rx为充电电感与被测电阻. 电流方程为: , 式中 时间常数, =L/R,2022/12/1,16,图5-1 直流电阻测量接线原理图,电流增长时间曲线,2022/12/1,17,从时间常数 =L/R可知,为了减小时间常数,缩短充电时间t有两种方法,一是减少线圈的电感L,二是增加回路的电阻R。变压器绕组的电感量L决定于绕组的匝数N,铁心的几何尺寸和硅钢片的导磁系数即磁导率 。对于被试变压器来讲,只有磁导率 可以改变,即在铁心磁通密度趋于饱和时, 就大幅下降,从而线圈电感L也随之减小。变压器直流
11、电阻测量为了缩短充电时间和准确的电阻值,充电电流一般选择为额定电流的2-10%。大容量变压器选择较小值小容量变压器选择较大值。 助磁法是采用高低压绕组串联,高压绕组助磁,快速测量低压绕组电阻的方法,该方法一般用于铁心为三相五柱式,低压绕组为d接大容量变压器的直流电阻测量中。,2022/12/1,18,高低压绕组磁法测量原理图,2022/12/1,19,测量时注意问题1)测量时应注意大容量变压器充电时间较长应有足够的充电时间;绕组直流电阻难度随着变压器的单台容量增大而增加,特别是铁心为五柱式,低压绕组为三角形连接的特大容量变压器,测量直流电阻时,电流达到稳定的时间很长。如果电流未达到稳定时读数,
12、则测不出电流的真实数。2)接线夹接触是否良好;清除接线引起的误差;3)温度偏差影响,三相线圈温度偏差1时,在常温下线圈误差将会增大接近0.4%4)无励磁分接开关应使定位装置进入指定位置,有载分接开关应采用电动操作。5)试验时应记录好环境温度及变压器油温度。,2022/12/1,20,6)直流回路中有电流I时,变压器铁心磁场中有能量,,断开时会产生高电压,可能危及人身安全和损坏仪表,所以需要用放电回路使电流由I通过电阻上的损耗逐渐下降,待电流很小时再断开线路。,7)变压器在测量电阻时,不得切换无励磁分接开关来改变分接。无励磁分接开关改变分接时将在触头间发生电弧,引起油的分解,并形成可燃气体和碳,
13、使变压器油质变坏,同时损坏电桥。,2022/12/1,21,试验中常见问题 在工序过程中(器身试验)经常遇到以下问题,(容量120MVA以上,低压为 10.5kV)低压直流电阻三相不平率超差。原因有:1.设计时低压引线电阻不平衡,引线占线圈直阻的比重很大,使线圈不平衡率超差。2.低压引线使用的铜排电阻率不合格,铜排电阻较大引起三相直流电阻偏差较大。3.温度偏差影响,三相线圈温度偏差1时,在常温下线圈误差将会增大接近0.4%,所以变压器刚焊接完后不要立即测量直流电阻。4.试验接线引起的误差,当测量线接触不好时,将出现较大的误差。特别是电压端子接触不好时误差将加大。,2022/12/1,22,出厂
14、试验经常遇到的问题有:1.有载变压器的有载开关烘烤后产生氧化膜,使直流电阻不合格。有在开关反复操做500次左右一般能够好转,有时操作1000次左右才能好转,如果反复操作不能好转时,需放油进行处理,将开关触头进行人工处理。2.无载开关也会遇到开关触头氧化现象,处理方法同有载开关。另外无载开关也经常遇到开关装配不良,虽然开关外部指示位置正确时,开关内部触头接触不良,需重新装配调整重新试验。3.引线铜头与高压套管接线排(佛手)接触不良。低压软连接与套管接线板接触不良。,2022/12/1,23,绝缘电阻及吸收比、极化指数的测量绝缘电阻及吸收比、极化指数测量的目的在变压器制造过程中,用来确定绝缘的质量
15、状态及发现生产中可能出现的局部和整体缺陷并作为产品是否可以继续进行绝缘强度试验的一个辅助判断手段。同时向用户提供产品出厂前的绝缘特性实测数据,用户由此可以对比运输、安装、运行中由于吸潮、老化及其他原因引起的绝缘劣化,使变压器的绝缘事故防患于未然,从而获得在维护上有价值的历史资料。,2022/12/1,24,绝缘电阻、吸收比及极化指数的测量是评价电器设备绝缘质量的方法之一。由于绝缘电阻测量只需兆欧表就可以进行。而且是一种非破坏性试验,在现场使用十分方便。所以电器设备的绝缘电阻测量在制造、安装、运行中的预防性试验中广泛使用。如果能定期进行测量并长期积累数据观察变化倾向,非常有助于对绝缘状况作出正确
16、的分析和判断。,2022/12/1,25,执行标准:GB6451-2008. 35kV级4000kVA及以上和63kV级以上的所有变压器均测量其绝缘电阻及吸收比。330kV大容量变压器还应测量极化指数。国家标准GB50150-2006新标准规定,35kV等级以上,容量4000kVA以上,应测量吸收比。变压器吸收比应大于1.3,如果绝缘绝对值很高的吸收比小于1.3时,可改测极化指数。国家标准GB50150-2006新标准规定,35kV等级以上,容量4000kVA以上,应测量吸收比。当R60大于3000M,吸收比可不做考核要求。220kV等级以上,容量120MVA以上,应测量吸收比。极化指数应大于
17、1.3,如果绝对值非常高,极化指数小于1.3时,并不是绝缘有缺陷,而是绝缘仍良好的一种表现。当R60大于10000M,极化指数可不做考核要求。,2022/12/1,26,测量方法及要求测量使用5000V、指示量程不低于100000M的兆欧表,精度1.0级。试验时被试品线端应短路,非被试侧应短路接地。兆欧表(L)火线接被试品,(E)地端接地,。测量前应对该绕组充分放电,以消除残余电荷对测量的影响。 (L)火线端使用良好的绝缘线,并悬吊好,使引线不影响的测量结果。每次测试完毕后,应首先断开火线,以避免停电后被测绕组向兆欧表放电而反向冲击仪表。测量时,绕组温度应在10-40之间,空气相对湿度应小于8
18、5%。试验时应记录好温度及湿度,并计算好吸收比和极化指数的比值,2022/12/1,27,4、5项目只对16000KVA以上变压器进行变压器铁芯及夹件绝缘测量使用2500V兆欧表,量程为10000M。,试验按照表1的测试绕组进行。当一个绕组测试完毕后,首先应将被测绕组放电,然后改接另一绕组测量。,2022/12/1,28,绝缘电阻值按1分钟电阻值来考核,线圈绝缘电阻20时不应小于2000M。铁心绝缘电阻不应小于200M,低于以上要求应查找原因,当绝缘电阻较低时一般与变压器器身烘烤干燥质量有关,与变压器油的优劣有关,当变压器绝缘电阻较低时,可进行滤油及热油循环处理,一般效果比较明显。如果滤油效果
19、不明显时变压器器身需重新干燥。当夏季空气湿度很大时,变压器装配时间过长,变压器器身长时间暴露在潮湿的空气中,绝缘电阻将降低很多,变压器装配越快暴露时间越短越好,这样才能保证变压器绝缘不降低。,2022/12/1,29,绝缘电阻测量常见问题变压器吸收比测量经常达不到1.3的标准,这需要进行综合得分析,当绝缘电阻绝对值非常高时,吸收比往往达不到要求,但是这不表明绝缘有缺陷或受潮,而是绝缘状况良好的表现,可以用提高变压器温度的方法来进行判断。当温度上升时绝缘电阻值降低而吸收比却上升。当吸收比达不到要求时,可进行极化指数测量,极化指数达到1.5时表明绝缘良好,当绝缘电阻值很低而吸收比极化指数达不到要求
20、时,表明变压器受潮严重应进行处理。,2022/12/1,30,夏季变压器绝缘电阻往往不是很高,这还与瓷瓶(套管)表面受潮有关,测量绝缘时在瓷瓶表面进行屏蔽,屏蔽环与摇表屏蔽端子连接,可消除表面受潮的影响。另外摇表测量线绝缘也应良好,带摇表线空摇摇表时表针指示应在位置,消除摇表线对绝缘电阻的影响。变压器经常发生铁心及夹件绝缘不高等问题,甚至绝缘到零。此类问题发生的原因多为铁心绝缘件受潮,变压器中有异物,固定绝缘件发生位移等。,2022/12/1,31,介质损耗因数测量介质损耗因数测量和绝缘电阻一样都属于绝缘特性试验。它和绝缘电阻一起很早以前就被普遍用作判断产品绝缘状态是否良好的重要手段。当外施电
21、压为交流电压时,绝缘中的视在功率UI可分为两部分组成,有功部分P和无功部分Q,其比值称为介质损耗因数。即tan=P/Q,2022/12/1,32,测量方法 试验仪现在皆采用数字式交流电桥,测量精度误差小于1%。 正接线测量:只能测量两极对地绝缘的产品,例如变压器套管。 反接线测量:试品对地之间的绝缘介质损耗测量 变压器试验接线试验顺序同绝缘电阻测量,试验测量环境要求同绝缘测量。变压器试验接线时电桥接线采用反接线,套管试验采用正接线。 施加电压按下列规定:额定电压在6kV及以下的试品按额定电压;额定电压为10kV以上的试品按10kV加压。,2022/12/1,33,tan 功率因数电压特性:当绝
22、缘介质工艺处理良好时,外施电压与tan之间的关系近似一水平直线。当绝缘介质工艺处理不好或绝缘介质中残留气泡时,则绝缘介质的tan比良好绝缘时要大。 tan曲线较早的向上弯曲。电压上升和下降时测得的tan值不相重合。当绝缘老化时,绝缘介质的tan反而比良好绝缘时要小,但tan增长的电压较低,即tan曲线在较低电压下即向上弯曲,另外,老化的绝缘比较容易吸潮,一旦吸潮, tan就会随电压上升迅速增大。,2022/12/1,34,tan 功率因数温度特性:tan随温度升高而增加,其与温度之间的关系与绝缘材料的种类、性能和产品绝缘结构等有关。在同样的绝缘材料、同样的绝缘结构情况下与绝缘介质的干燥工艺、吸
23、潮和老化程度有关。在10-40范围时,干燥的产品tan增长较慢。温度高于40时tan增长加快。温度特性曲线向上弯曲。,2022/12/1,35,当对试品绝缘性能产生怀疑时,可在不同电压下测量其介质损耗因数。绝缘良好的试品应随着电压的升高介质损耗不变或是略有升高。在10-40时,介质损耗因数的测量结果不超过下列规定:35kV级及以下绕组20时不大于1.5%63kV级及以上的绕组20时不大于0.8%330kV级及以上的绕组20时不大于0.5% 协议有要求者,按协议要求值。,2022/12/1,36,当绕组温度与20不同时,换算方法按GB6451-2008标准的方法进行。当温度在20 以上时,tan
24、= tanT/A当温度在20 以下时,tan= AtanT。 A-温度换算系数。试验时,试验电源频率应为额定频率,其偏差不应大于5%。电压波形应为正弦波形。仪器接地应良好,最好与被试品一起接地。加压线应绝缘良好,并悬起支撑好,使引线不影响测量结果。,2022/12/1,37,影响介质损耗功率因数测量的因素:环境因素:温度和湿度的影响。试验接线造成的影响:高压线绝缘不良。高压线和地线接触不良。套管为垂直立起试验,或立起时间不够。套管表面受潮。(往往出现介损为负值),2022/12/1,38,外施交流耐压试验外施交流耐压目的为了保证变压器符合安全可靠运行的要求,除变压器的绝缘性能,电气性能符合国家
25、标准。还必须使变压器的绝缘强度符合要求。外施交流耐压的目的是考核绕组对地和绕组之间的主绝缘强度。这一目的对全绝缘变压器来说完全能达到,对分级绝缘变压器则只能考核中性点对地(端绝缘对铁轭)绝缘水平。,2022/12/1,39,根据GB1094.3-2003标准试验电压如下全绝缘变压器(35kV电压等级以下变压器)短时额定耐受电压,* 有些变压器协议中要求,考虑变压器传递过电压将变压器绝缘水平提高一个电压等级.高海拔地区变压器试验电压按协议执行。协议中对短时额定耐受电压有规定要求的按协议执行。,2022/12/1,40,分级绝缘变压器中性点端子短时额定耐受电压,2022/12/1,41,外施交流耐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力变压器 试验 课件
链接地址:https://www.31ppt.com/p-1490023.html