第七章脉冲波形的产生与整形电路课件.ppt
《第七章脉冲波形的产生与整形电路课件.ppt》由会员分享,可在线阅读,更多相关《第七章脉冲波形的产生与整形电路课件.ppt(63页珍藏版)》请在三一办公上搜索。
1、第七章,脉冲波形的产生与整形电路,7.1 脉冲信号与脉冲电路 7.2 施密特触发器 7.3 单稳态触发器 7.4 多谐振荡器 7.5 555定时器及其应用 7.6 用Multisim 10分析555定时器,一、本章内容,1. 掌握施密特触发器的工作原理。2. 掌握单稳态触发器的工作原理。3. 掌握多谐振荡器的工作原理。4. 掌握555定时器电路结构及其应用。5. 掌握基本脉冲电路的设计。,二、本章教学目的与要求,三、本章知识结构,7.1 脉冲信号与脉冲电路,在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产
2、生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫兹)。 脉冲的原意被延伸出来即隔一段相同的时间发出的波等机械形式,学术上把脉冲定义为在短时间内突变,随后又迅速返回其初始值的物理量称之为脉冲。,7.1.1 脉冲信号 脉冲信号现在一般指数字信号,它已经是一个周期内有一半时间(甚至更长时间)有信号。 脉冲信号是一种离散信号,与普通模拟信号(如正弦波)相比,波形之间在时间轴不连续(波形与波形之间有明显的间隔)但具有一定的周期性是它的特点。脉冲信号可以用来表示信息,也可以用来作为载波,比如脉冲调制中的脉冲编码调制(PC
3、M),脉冲宽度调制(PWM)等等,还可以作为各种数字电路、高性能芯片的时钟信号。,(a)方波(b)矩形波(c)梯形波(d)锯齿波(e)钟形波(f)三角波(g)尖峰波(h)阶梯波,脉冲宽度,脉冲幅度,下降时间,上升时间,脉冲周期,理想的矩形波波形,实际的矩形波波形,7.1.2 脉冲电路,脉冲有各种各样的用途,有对电路起开关作用的控制脉冲,有起统帅全局作用的时钟脉冲,有做计数用的计数脉冲,有起触发启动作用的触发脉冲等等。这些脉冲波形的获取,通常采用两种方法:一种是利用脉冲信号产生器直接产生;另一种则是对已有信号进行整形,使之满足系统的要求。 脉冲电路是专门用来产生电脉冲和对电脉冲进行放大、变换和整
4、形的电路。家用电器中的定时器、报警器、电子开关、电子钟表、电子玩具以及电子医疗器具等,都要用到脉冲电路。,脉冲电路的特点是脉冲电路中的晶体管是工作在开关状态的。大多数情况下,晶体管是工作在特性曲线的饱和区或截止区的,所以脉冲电路有时也叫开关电路。脉冲电路的另一个特点是一定有电容器(用电感较少)作关键元件,脉冲的产生、波形的变换都离不开电容器的充放电。 脉冲波形的整形电路中,最常用的电路有施密特触发器和单稳态触发器;脉冲波形的产生电路中,最常用的电路是多谐振荡器。,7.2 施密特触发器,施密特触发器是一种常用的脉冲波形整形电路,能够将边沿变化缓慢的脉冲信号波形整形为边沿陡峭的矩形波。它具有如下两
5、个特点: 一是滞回特性,即对于正向和负向变化的输入信号,分别有不同的临界阈值电压。 二是电平触发,即当输入信号达到一定的电压值时,输出电压会发生突变。这一特点对于缓慢变化的信号仍然适用。因此施密特触发器是一种受输入信号电平直接控制的双稳态电路。,在此,称VT+为正向阈值电压,VT为负向阈值电压。显然,施密特触发器的正向和负向阈值电压是不等的,定义二者之差VT为回差电压,即VT= VT+VT。,1. 电路结构,假定图中CMOS反相器的阈值电压为VTH 1/2VDD,设电阻R1R2。,7.2.1 门电路构成的施密特触发器,当输入UI为0V时,G1截止、G2导通,输出UO为0V, 0 。当输入电压U
6、I逐渐上升到 =VTH时,G1进入电压特性的转折区,所以电路将发生如下正反馈: UO1UO 使电路迅速跳变到 UO=VOH VDD。由此可求出上升过程中电路发生转换时的输入电平VT+ 。,2. 工作原理,当UI从高电平下降时, 也下降;当UI下降使 趋于G1门的阈值电压VTH时,G1门和G2门又处在要翻转的边缘;当UI下降使 =VTH时,UO1=UOH,UO=UOL0。由此可求出此电路在UI下降过程中的负向阈值电压VT。,VTVT+-VT,3. 电压传输特性,同相传输特性,反相传输特性,7.2.2 集成施密特触发器,CMOS集成施密特触发器,集成施密特触发器CC40106的逻辑功能图,集成施密
7、特触发器CC40106的主要静态参数,2. TTL集成施密特触发器 TTL施密特触发器具有以下特点:输入信号边沿的变化即使非常缓慢,电路也能正常工作;对于阈值电压和滞回电压均有温度补偿;带负载能力和抗干扰能力都很强。TTL集成施密特触发器74LS13、74LS14、74LS132的主要参数典型值如表7-2所示。,表7-2 TTL集成施密特触发器的主要参数,7.2.3 施密特触发器的应用,1. 用作接口电路,施密特触发器用作TTL接口电路,2. 用作整形电路,3. 用作脉冲鉴幅 如果将一系列幅度不相同的脉冲信号加到施密特触发器的输入端,只有那些信号幅度大于VT+的脉冲才会在输出端产生输出信号。因
8、此,施密特触发器能将幅度大于VT+的脉冲选出,如图所示。,用施密特触发器鉴别脉冲幅度,7.3 单稳态触发器,施密特触发器是双稳态电路,有0、1两个稳态,状态改变受外加信号控制。而单稳态触发器是单稳态电路,有一个稳态(0态或1态)和一个暂稳态,在外加输入信号的作用下电路由稳态翻转到暂稳态,保持一段时间后又自动返回原来的稳态。单稳态触发器的输出通常为宽度恒定的脉冲信号,而暂稳态的时间仅取决于电路自身的相关参数。,7.3.1 门电路构成的单稳态触发器,用门电路组成单稳态触发器有微分型和积分型两大类。下面以微分型单稳态触发器为例进行讲述。1. 电路结构,微分型单稳态触发器,2. 工作原理 此电路用负脉
9、冲触发无效,只有在正的窄脉冲触发时,电路才有响应。,触发时,UI=1,UO1=0,由于电容C两端的电压在触发瞬间不能突变,所以UI2=0,使UO=1。故有暂态UO=1。,接下来,电容C充电,充电回路为VDDRCUO1 ,充电使UI2升高。当UI2升高到G2门的阈值电压VTH时,UO突跳为0,电路返回到自然稳态:UO=0。,2. 工作原理 此电路用负脉冲触发无效,只有在正的窄脉冲触发时,电路才有响应。,接下来,电容C开始放电,放电回路有两条,分别为UI2RVDD和UI2G2VDD ,放电使UI2下降,当UI2下降到等于VDD时(此时,C两端均为VDD,C中无电荷),电路稳定,保证UO=0。,当U
10、O=0时, =0,UI=0(UI为窄脉冲,触发高电平此时已经消逝),所以UO1从“0”突跳为“1”(即上升了VDD);由于电容C两端的电压瞬间不能突变,所以UI2也应该从VTH突跳为VTH+VDD,但实际上由于G2门输入端有钳位二极管,所以UI2实为VDD0.7V。,充电等效电路,放电等效电路,电压波形,3. 输出电压脉宽tw的计算,tw等于UI2从0上升到VTH所对应的时间,电容C的充电时间常数=RC,初始值UI2(0+)=0,稳定值UI2()=VDD,转换值UI2(tw)=VTH1/2 VDD,7.3.2 集成单稳态触发器,TTL集成单稳态触发器74121 74121是在普通微分型单稳态触
11、发器的基础上附加以输入控制电路和输出缓冲电路而形成的。,逻辑符号图,工作波形图,外接电阻(下降沿触发),内接电阻(上升沿触发),2. 主要参数(1)输出脉冲宽度tw 集成单稳态触发器74121的输出脉冲宽度。当使用外接电阻电阻时,tw0.7RextC;当使用内部电阻时tw0.7RintC。(2)输入触发脉冲最小周期Tmin 输入触发脉冲最小周期Tmin为输出脉冲宽度和恢复时间之和,即Tmin=twtre。(3)周期性输入触发脉冲占空比q 周期性输入触发脉冲占空比q定义为q = tw/T,其中T是输入触发脉冲的重复周期,tw是单稳态触发器的输出脉冲宽度。,3. 集成单稳态触发器的重复触发问题 集
12、成单稳态触发器有不可重复触发型和可重复触发型两种。不可重复触发的单稳态触发器一旦被触发进入暂稳态以后,再加入触发脉冲不会影响电路的工作过程,必须在暂稳态结束以后,它才能接受下一个触发脉冲而转入下一个暂稳态,如图7.16(a)所示。而可重复触发的单稳态在电路被触发而进入暂稳态以后,如果再次加入触发脉冲,电路将重新被触发,使输出脉冲再继续维持一个tw宽度,如图7.16(b)所示。,图7.16 单稳态触发器的不同工作波形(a)不可重复触发型 (b)可重复触发型,7.3.3 单稳态触发器的应用,1. 定时与延时,单稳态触发器用于延时与定时,2. 脉冲整形 单稳态触发器还能够把不规则的输入信号,整形成幅
13、度和宽度都相同的标准矩形脉冲,如图所示。图中UI是输入的不规则信号,UO是输出信号,UO的幅度取决于单稳态电路输出的高、低电平,UO的宽度tw取决于暂稳态时间。,7.4 多谐振荡器,7.4.1 门电路构成的多谐振荡器 多谐振荡器也称自激振荡器,是产生矩形脉冲波的典型电路,常用来做脉冲信号源。多谐振荡器没有输入端,接通电源便自激振荡。多谐振荡器起振之后,电路没有稳态,只有两个暂稳态,它们交替变化,输出连续的矩形脉冲信号,因此又称它为无稳态电路。,对称式多谐振荡器,由于电路没有稳定状态,所以在静态时它的状态是不稳定的,必须使反相器G1、G2工作在电压传输特性曲线的转折区,以保证电压放大倍数大于1,
14、此时只要G1或G2的输入端有极小的扰动,就会被正反馈回路放大而引起振荡。只要电阻RF1和RF2的取值选择合适,就可以使G1、G2在静态时工作在电压传输特性曲线的转折区。,假设某一时刻,电路由于某种原因使UI1有个极小的正跳变,则通过正反馈回路使UO1迅速跳变为低电平,UO2迅速跳变为高电平,即电路进入第一个暂稳态:UO1=0、UO2=1。接下来,电容C1开始充电、C2 开始放电。,电容C1充电等效电路,电容C2放电等效电路,从图中可以看出,电容C1同时经过R1和RF2两条支路充电,电容C2经过RF1放电,所以电容C1充电速度较快,UI2首先上升到G2的阈值电压,即UI2变为高电平,经过正反馈回
15、路作用,使UO2迅速跳变为低电平,UO1迅速跳变为高电平,即电路进入第二个暂稳态:UO1=1、UO2=0。此时,电容C1开始放电、C2 开始充电。,工作电压波形,当C1=C2= C、RF1=RF2=R时,T=T1+ T2=2 T1,2. 环形振荡器 环形振荡器是利用闭合回路中的延迟负反馈作用形成振荡的,将奇数个反相器首位相连就可以形成环形振荡器,利用3个反相器构成的环形振荡器如图所示。,环形振荡器的工作电压波形,振荡周期T=6tpd,根据以上分析可知,将任何大于、等于3的奇数个(n个)反相器首尾相连,都可以产生自激振荡,而且振荡周期为,T=2ntpd,由于门电路的传输延迟时间极短,TTL电路不
16、超过100ns,CMOS电路不超过200ns,所以环形振荡器的振荡频率比较高。如果想获得稍低一些的振荡频率是比较困难的,并且频率不宜调节。为了克服这两个缺点,可以在电路上增加延迟环节,组成带RC延迟电路的环形振荡器,如图所示。,7.4.2 石英晶体多谐振荡器,若在石英晶片的两极加上一个电场,晶片将会产生机械变形。若在晶片上施加机械压力,则在晶片相应的方向上会产生一定的电场,这种物理现象称为压电效应。因此,当在晶片的两极加上交变电压时,晶片将会产生机械变形振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片的机械振动的振幅和交变电场的振幅都非常微小,只有在外加交变电压的频率为某一特定频率
17、时,振幅才会突然增加,比一般情况下的振幅要大得多,这种现象称为压电谐振。这和LC回路的谐振现象十分相似,因化,石英晶体又称为石英谐振器。上述特定频率称为晶体的固有频率或谐振频率。,图7.25 石英晶体的电抗频率特性和符号(a)电抗频率特性(b)等效电路(c)电路符号,从石英晶体谐振器的等效电路可知,它有两个谐振频率, 即当L、C、R支路发生谐振时,它的等效阻抗最小(等于R)。 串联谐振频率为,当频率高于fs时, L、C、R支路呈感性,可与电容Co发生并联谐振, 并联谐振频率为,由于CCo, 因此fs和fp非常接近。,石英晶体多谐振荡器,7.5 555定时器及其应用,7.5.1 555定时器的组
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 脉冲 波形 产生 整形 电路 课件
链接地址:https://www.31ppt.com/p-1473684.html