第三章多元线性回归模型及非线性回归模型ppt课件.ppt
《第三章多元线性回归模型及非线性回归模型ppt课件.ppt》由会员分享,可在线阅读,更多相关《第三章多元线性回归模型及非线性回归模型ppt课件.ppt(81页珍藏版)》请在三一办公上搜索。
1、多元线性回归模型,计量经济学,第三章,2,引子:中国已成为世界汽车产销第一大国,2009年,为应对国际金融危机、确保经济平稳较快增长,国家出台了一系列促进汽车消费的政策,有效刺激了汽车消费市场,汽车产销呈高增长态势,首次成为世界汽车产销第一大国。2009年,汽车产销分别为1379.1万辆和1364.5万辆,同比增长48.3%和46.15%。 是什么因素导致中国汽车数量的增长? 影响中国汽车行业发展的因素并不是单一的,经济增长、消费趋势、市场行情、业界心态、能源价格、道路发展、内外环境,都会使中国汽车行业面临机遇和挑战。,3,分析中国汽车行业未来的趋势,应具体分析这样一些问题:中国汽车市场发展的
2、状况如何?(用销售量观测)影响中国汽车销量的主要因素是什么? (如收入、价格、费用、道路状况、能源、政策环境等)各种因素对汽车销量影响的性质怎样?(正、负)各种因素影响汽车销量的具体数量关系是什么?所得到的数量结论是否可靠?中国汽车行业今后的发展前景怎样?应当如何制定汽车的产业政策?很明显,只用一个解释变量已很难分析汽车产业的发展, 还需要寻求有更多个解释变量情况的回归分析方法。,怎样分析多种因素的影响?,4,本章主要讨论: 多元线性回归模型及古典假定 多元线性回归模型的估计 多元线性回归模型的检验 多元线性回归模型的预测,5,第一节 多元线性回归模型及古典假定 一、多元线性回归模型的意义 一
3、般形式:对于有K-1个解释变量的线性回归模型 注意:模型中的 (j=1,2,-k)是偏回归系数 样本容量为n 偏回归系数: 控制其它解释量不变的条件下,第j个解释变量的单位变动对被解释变量平均值的影响,即对Y平均值“直接”或“净”的影响。,5,6,多元线性回归中的“线性”指对各个回归系数而言是“线性”的,对变量则可以是线性的,也可以是非线性的例如:生产函数取对数这也是多元线性回归模型,只是这时变量为lnY、lnL、lnK,7,多元总体回归函数 条件期望表现形式:将Y的总体条件期望表示为多个解释变量的函数,如:注意:这时Y总体条件期望的轨迹是K维空间的一条线个别值表现形式:引入随机扰动项或表示为
4、,8,多元样本回归函数 Y 的样本条件均值可表示为多个解释变量的函数 或回归剩余(残差): 其中,9,二、多元线性回归模型的矩阵表示,多个解释变量的多元线性回归模型的n组样本观测值,可表示为 用矩阵表示,9,10,总体回归函数 或样本回归函数 或 其中: 都是有n个元素的列向量 是有k 个 元素的列向量 ( k = 解释变量个数 + 1 ) 是第一列为1的nk阶解释变量数据矩阵 , (截距项可视为解释变量总是取值为1),矩阵表示方式,11,三、多元线性回归中的基本假定,假定1:零均值假定 ( i=1,2,-n) 或 E(u)=0 假定2和假定3:同方差和无自相关假定: 或用方差-协方差矩阵表示
5、为:,(i=j),(ij),0,12,假定5: 无多重共线性假定 (多元中增加的) 假定各解释变量之间不存在线性关系,或各个解释变量观测值之间线性无关。或解释变量观测值 矩阵X的秩为K(注意X为n行K列)。 Ran(X)= k Rak(XX)=k 即 (XX) 可逆 假定6:正态性假定,12,假定4:随机扰动项与解释变量不相关,第二节 多元线性回归模型的估计,一、普通最小二乘法(OLS)原则:寻求剩余平方和最小的参数估计式 即求偏导,并令其为0 其中即,13,14,用矩阵表示的正规方程偏导数因为样本回归函数为 两边左乘根据最小二乘原则则正规方程为,15,OLS估计式 由正规方程 多元回归的OL
6、S估计量为当只有两个解释变量时为:注意: 为X、Y的离差,对比,简单线性回归中,16,OLS回归线的数学性质 (与简单线性回归相同),回归线通过样本均值 估计值 的均值等于实际观测值 的均值 剩余项 的均值为零 被解释变量估计值 与剩余项 不相关 解释变量 与剩余项 不相关 (j=1,2,-k),16,17,二、 OLS估计式的统计性质,1、 线性特征 是Y的线性函数,因 是非随机或取固定值的矩阵 2、 无偏特性 (证明见教材P101附录3.1) 3、 最小方差特性 在 所有的线性无偏估计中,OLS估计 具有最小方差 (证明见教材P101或附录3.2) 结论:在古典假定下,多元线性回归的 OL
7、S估 计式是最佳线性无偏估计式(BLUE),18,三、 OLS估计的分布性质基本思想: 是随机变量,必须确定其分布性质才可能进行区间估计和假设检验 是服从正态分布的随机变量,决定了Y也是服从正态分布的随机变量 是Y的线性函数,决定了 也是服从正态分布的随机变量,19, 的期望 (由无偏性) 的方差和标准误差: 可以证明 的方差协方差矩阵为(见下页) 这里的 (其中 是矩阵 中第 j 行第 j 列的元素) 所以 (j=1,2,-k),的期望与方差,20,其中:,(由无偏性),(由同方差性),(由OLS估计式),20,注意 是向量,的方差-协方差,21,四、 随机扰动项方差 的估计,一般未知,可证
8、明多元回归中 的无偏 估计为:(证明见P103附录3.3) 或表示为 将 作标准化变换:,21,对比: 一元回归中,22,五、 回归系数的区间估计,由于给定 ,查t分布表的自由度为 n-k 的临界值或或表示为,22,23,第三节多元线性回归模型的检验,一、多元回归的拟合优度检验 多重可决系数:在多元回归模型中,由各个解释 变量联合起来解释了的Y的变差,在Y的总变差中占 的比重,用 表示 与简单线性回归中可决系数 的区别只是 不同多元回归中多重可决系数可表示为 (注意:红色字体是与一元回归不同的部分),23,24,多重可决系数的矩阵表示 可用代数式表达为 特点:多重可决系数是模型中解释变量个数的
9、不减函 数,这给对比不同模型的多重可决系数带来缺陷,所以需要修正。,25,修正的可决系数思想:可决系数只涉及变差,没有考虑自由度。 如果用自由度去校正所计算的变差,可纠 正解释变量个数不同引起的对比困难。回顾: 自由度:统计量的自由度指可自由变化的样本观 测值个数,它等于所用样本观测值的个 数减去对观测值的约束个数。,26,可决系数的修正方法 总变差 TSS 自由度为 n-1 解释了的变差 ESS 自由度为 k-1 剩余平方和 RSS 自由度为 n-k 修正的可决系数为,27,修正的可决系数 与可决系数 的关系 已经导出: 注意: 可决系数 必定非负,但所计算的修正可决系数 有可能为负值 解决
10、办法:若计算的 ,规定 取值为0,28,28,二、回归方程的显著性检验(F检验),基本思想: 在多元回归中包含多个解释变量,它们与被解释变量是否有显著关系呢? 当然可以分别检验各个解释变量对被解释变量影响的显著性。 但是我们首先关注的是所有解释变量联合起来对被解释变量影响的显著性, 或整个方程总的联合显著性,需要对方程的总显著性在方差分析的基础上进行F检验。,29,原假设:(所有解释变量联合起来对被解释变量的影响不显著)备择假设: 不全为0建立统计量(可以证明): 给定显著性水平 ,查F分布表中自由度为 k-1 和 n-k 的临界值 ,并通过样本观测值计算F值,29,30,如果计算的F值大于临
11、界值 , 则拒绝 ,说明回归模型有显著意义, 即所有解释变量联合起来对Y确有显著影响。如果计算的F值小于临界值 ,则不拒绝 ,说明回归模型没有显著 意义,即所有解释变量联合起来对Y没有显著影响。,31,三、各回归系数的假设检验,注意: 在一元回归中F检验与t检验等价, 且 (见教材P87证明)但在多元回归中,F检验显著,不一定每个解释变量都对Y有显著影响。还需要分别检验当其他解释变量保持不变时,各个解释变量X对被解释变量Y是否有显著影响。 方法: 原假设 (j=1,2,k) 备择假设 统计量t为:,32,给定显著性水平,查t分布表的临界值为如果 就不拒绝 ,而拒绝 即认为 所对应的解释变量 对
12、被解释变量Y的影响不显著。 如果 就拒绝 而不拒绝 即认为 所对应的解释变量 对被解释变量Y的影响是显著的。,对各回归系数假设检验的作法,33,第四节多元线性回归模型的预测,一、被解释变量平均值预测1. Y平均值的点预测 方法:将解释变量预测值代入估计的方程: 多元回归时: 或注意: 预测期的 是第一个元素为1的行向量,不是矩阵,也不是列向量,34,2. Y平均值的区间预测,基本思想: (与简单线性回归时相同) 由于存在抽样波动,预测的平均值 不一定 等于真实平均值 ,还需要对 作区间估计。 为了对Y作区间预测,必须确定平均值预测值 的抽样分布。 必须找出与 和 都有关的统计量, 并要明确其概
13、率分布性质。,34,35,区间预测的具体作法,当 未知 时,只得用 代替,这时,简单线性回归中,(回顾简单线性回归),35,36,多元回归时,与预测的平均值 和真实平均值 都有关的是二者的偏差 : 服从正态分布,可证明 用 代替 ,可构造 t 统计量,区间预测的具体作法(多元时),37,或者,服从正态分布,可证明 即标准化当用 代替 时 ,可构造 t 统计量,37,38,给定显著性水平,查t分布表,得自由度为 n-k的临界值 ,则或,区间预测的具体作法,39,二、被解释变量个别值预测,基本思想: (与简单线性回归时相同) 由于存在随机扰动 的影响,Y的平均值并不等于Y的个别值。 为了对Y的个别
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 多元 线性 回归 模型 非线性 ppt 课件
链接地址:https://www.31ppt.com/p-1469446.html