《高三生物基因工程ppt课件.ppt》由会员分享,可在线阅读,更多相关《高三生物基因工程ppt课件.ppt(57页珍藏版)》请在三一办公上搜索。
1、生物 选修3现代生物科技专题,目 录,专题1 基因工程专题2 细胞工程专题3 胚胎工程专题4 生物技术的安全性和伦理问题专题5 生态工程,专题1 基因工程,基础理论和技术的发展催生了基因工程,20世纪中叶,基础理论取得了重大突破1.DNA是遗传物质的证明2.DNA双螺旋结构和中心法则的确立3.遗传密码的破译,技术发明使基因工程的实施成为可能1.基因转移载体的发现 2.工具酶的发现3.DNA合成和测序技术的发明4.DNA体外重组的实现 5.重组DNA表达实验的成功6.第一例转基因动物问世 7.PCR技术的发明,基因工程又叫基因拼接技术或DNA重组技术。该技术是在生物体外,通过对DNA分子进行人工
2、“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出人类所需要的生物类型和生物产品。,一、基因工程的概念,基因拼接技术或DNA重组技术,生物体外,基因,DNA分子水平,人类需要的生物类型和生物产品,剪切, 拼接, 导入, 表达,基因重组,基本工具:限制性核酸内切酶“分子手术刀”DNA连接酶“分子缝合针”基因进入受体细胞的载体“分子运输车”,二、 DNA重组技术的基本工具,黏性末端:被限制酶切开的DNA两条单链的切口,带有几个伸出的核苷酸,他们之间正好互补配对,这样的切口叫黏性末端。,1、限制性核酸内切酶“分子手术刀”,当限制酶从
3、识别序列的中心轴线处切开时,产生的是平末端。,当限制酶从识别序列的中心轴线两侧切开时,产生的是黏性末端。,识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。(6个,4、5、8个),主要是从原核生物中分离纯化出来的一种酶。,4000种。,(1)来源:,(2)种类:,(3)作用:,(4)结果:,形成两种末端,1、限制性核酸内切酶“分子手术刀”(小结),要想获得某个目的基因必须要用限制酶切几个切口?可产生几个黏性末端?一个目的基因有几个黏性末端?,要切两个切口,产生四个黏性末端,两个。,如果把两种来源不同的DNA用同一种限制酶来切割,会怎样呢?,会产
4、生相同的黏性末端。,是不是把两者的黏性末端黏合起来,这样就真的合成 重组的DNA分子了?,实际还不够,还需要DNA连接酶进行连接。,思考题:,1、种类:2、作用部位:,磷酸二酯键,DNA连接酶可把黏性末端之间的缝隙“缝合”起来,即把梯子两边扶手的断口连接起来,这样一个重组的DNA分子就形成了。,2、 DNA连接酶“分子缝合针”,3、基因进入受体细胞的运载体“分子运输车”,(1)运载体的作用,作为运载工具,将外源基因(抗虫基因)转移到受体细胞(棉花细胞)中去。利用运载体在受体细胞(棉花细胞)内,对外源基因(抗虫基因)进行大量复制。(随载体的复制而复制),(2)作为运载体必须具备的条件,能够在宿主
5、细胞中自我复制并稳定地保存。具有一个或多个限制酶切点,以便与外源基因连接。具有某些标记基因,便于进行筛选。必需是安全的,不会对受体 细胞有害。大小应适合,便于提取和操作,(3)常用的运载体,3、基因进入受体细胞的运载体“分子运输车”,细菌细胞质的质粒噬菌体的衍生物动植物病毒,注意:真正用作运载体的质粒都是人工改造过的。,3、基因进入受体细胞的运载体“分子运输车”,最常用的质粒是大肠杆菌的质粒,其中常含有抗药基因,如四环素的标记基因。质粒的存在与否对宿主细胞生存没有决定性作用,但复制只能在宿主细胞内成。,质粒是一种裸露的、结构简单、独立于细菌染色体(即拟核DNA)之外,并且具有自我复制能力的双链
6、环状DNA分子。,质粒是基因工程最常用的运载体。,(补充知识)基因的结构1、原核细胞的基因结构,与RNA聚合酶结合位点,终止子,RNA聚合酶能够识别调控序列中的结合位点,并与其结合。,转录开始后,RNA聚合酶沿DNA分子移动,并以DNA分子的一条链为模板合成RNA。,转录完毕后,RNA链释放出来,紧接着RNA聚合酶也从DNA模板链上脱落下来。,2、真核细胞的基因结构,编码区,与RNA聚合酶结合位点,启动子,终止子,编码区上游,编码区下游,有调控作用的核苷酸序列,包括位于编码区上游的RNA聚合酶结合位点。,启动子与起始密码,二、基因工程基本操作的四个步骤,目的基因的获取,基因表达载体的构建,将目
7、的基因导入受体细胞,目的基因的检测与鉴定,(一)目的基因的获取,1、目的基因主要是指_,编码蛋白质的结构基因,2、获取目的基因的常用方法,未知序列,(1)从基因文库中获取目的基因:,基因文库: 将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库(gene library)基因组文库: 基因文库中包含了一种生物所有的基因,这种基因文库叫做基因组文库.部分基因文库: 基因文库中包含了一种生物的一部分基因,这种基因文库叫做部分基因文库.,基因组文库和部分基因组文库(cDNA文库)比较,利用PCR技术扩增目的基因,利用PCR技术扩增,(
8、2)利用PCR技术扩增, 概念:PCR全称为_,是一项 在生物_复制_的核酸合成技术,条件:_、 _、_ (做启动子)、 _.前提条件:,原理:_,方式:以_方式扩增,即_(n为扩增循 环的次数),结果:,聚合酶链式反应,体外,特定DNA片段,DNA复制,已知基因的核苷酸序列,四种脱氧核苷酸,一对引物,DNA聚合酶,指数,2n,使目的基因的片段在短时间内成百万倍地扩增,PCR技术扩增过程,a、DNA变性(90-96):双链DNA模板 在热作用下,_断裂,形成_,b、退火(复性25-65):系统温度降低,引 物与DNA模板结合,形成局部_。,c、延伸(70-75):在Taq酶的作用下,从 引物的
9、5端3端延伸,合成与模板互补 的_。,氢键,单链DNA,双链,DNA链,PCR原理,变性,(3)人工合成,反转录法: 以目的基因转录成的信使RNA为模板,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需的基因。,目的基因的mRNA,杂交双链(单链RNA/单链DNA),单链DNA,反转录酶,DNA聚合酶,双链DNA(目的基因),(3)人工合成,根据已知的氨基酸序列合成DNA法 :,根据已知蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对原则,推测出它的结构基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。,蛋白质的氨基酸序列,mRNA的核苷
10、酸序列,结构基因的核苷酸序列,推测,推测,目的基因,化学合成,1.用一定的_切割 质粒,使其出现一个切 口,露出_。2.用_切断目 的基因,使其产生_ _。,二、基因表达载体的构建, 核心,3.将切下的目的基因片段插入质粒的_处,再加入适量_,形成了一个重组 DNA分子(重组质粒),限制酶,黏性末端,同一种限制酶,的黏性末端,切口,DNA连接酶,相同,质粒,DNA分子,DNA连接酶,4.过程:,(二)基因表达载体的构建, 核心,5.基因表达载体的组成:,复制原点+目的基因+启动子+终止子+标记基因,(二)基因表达载体的构建, 核心,启动子:位于基因的首端的一段特殊的DNA片断,它是RNA聚合酶
11、识别和结合的部位,有了它才能驱动基因转录出mRNA,最终获得蛋白质,终止子:位于基因的尾端的一段特殊的DNA片断,能终止mRNA的转录,标记基因的作用是为了鉴别受体细胞中是否含有目的基因,从而将有目的基因的细胞筛选出来,(三)将目的基因导入受体细胞,转化 ,方法,显微注射法,感受态细胞,目的基因进入_内,并且在受体细胞内维持_和_的过程,受体细胞,稳定,表达,(三)将目的基因导入受体细胞,农杆菌介绍:Ti质粒上有T-DNA,称为可转移的DNA,它可转移到受体细胞,并整合到受体细胞染色体DNA上.,2、将目的基因导入动物细胞(受精卵)显微注射法 -世界上第一例“超级小鼠”的成功设备:显微注射仪,
12、3、将目的基因导入微生物细胞,(三)将目的基因导入受体细胞,过程:,用Ca2+ 处理细胞,以增大细菌细胞壁的通透性,使细胞处于一种能吸收周围环境中DNA分子的生理状态,这种细胞称为感受态细胞.是将重组表达载体DNA分子溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程.目的基因在受体细胞内,随其繁殖而复制,由于细菌繁殖的速度非常快,在很短的时间内就能获得大量的目的基因。,(四)目的基因的检测与鉴定,检查是否成功,DNA分子杂交示意图,采用一定的技术手段,将两种生物的DNA分子的单链放在一起,如果这两个单链具有互补的碱基序列,那么,互补的碱基序列就会结合在一起
13、,形成杂合双链区;在没有互补碱基序列的部位,仍然是两条游离的单链。,(四)目的基因的检测与鉴定,检查是否成功,检测,鉴定,检测转基因生物染色体的DNA上是否插入了目的基因,检测目的基因是否转录出了mRNA,检测目的基因是否翻译成蛋白质,抗虫鉴定、抗病鉴定、活性鉴定等,过程:A.首先取出转基因生物的基因组DNAB.用含目的基因的DNA片段用放射性同位素等作标记,以此做探针C.使探针和转基因生物的基因组杂交,若显示出杂交带,表明染色体已插入染色体DNA中,过程:用上述探针和转基因生物的mRNA杂交,若出现杂交带,表明目的基因转录出了mRNA.,蛋白质工程,一、蛋白质工程崛起的缘由,通过基因工程能够
14、大规模生产生物体内微量存在的活性物质,并借助转基因而改变动植物性状,得以在人类医疗保健中进行基因诊断和基因治疗。然而在广泛利用自然界各种蛋白质的过程中就发现,这些蛋白质只是适应生物自身的需要,而对它们进行产业化开发往往不合意,需要加以改造。1983年Ulmer首先提出蛋白质工程,它是指按照特定的需要,对蛋白质进行分子设计和改造的工程。自此以后,蛋白质工程迅速发展,已成为生物工程的重要组成部分。,在已研究过的几千种酶中,只有极少数可以应用于工业生产,绝大多数酶都不能应用于工业生产,这些酶虽然在自然状态下有活性,但在工业生产中没有活性或活性很低。这是因为工业生产中每一步的反应体系中常常会有酸、碱或
15、有机溶剂存在,反应温度较高,在这种条件下,大多数酶会很快变性失活。提高蛋白质的稳定性是工业生产中一个非常重要的课题。一般来说,提高蛋白质的稳定性包括:延长酶的半衰期,提高酶的热稳定性,延长药用蛋白的保存期,抵御由于重要氨基酸氧化引起的活性丧失等。,例如:干扰素是一种抗病毒、抗肿瘤的药物。将人的干扰素的cDNA在大肠杆菌中进行表达,产生的干扰素的抗病毒活性为106 U/mg,只相当于天然产品的十分之一,虽然在大肠杆菌中合成的-干扰素量很多,但多数是以无活性的二聚体形式存在。为什么会这样?如何改变这种状况?研究发现,-干扰素蛋白质中有3个半胱氨酸(第17位、31位和141位),推测可能是有一个或几
16、个半胱氨酸形成了不正确的二硫键。研究人员将第17位的半胱氨酸,通过基因定点突变改变成丝氨酸,结果使大肠杆菌中生产的-干扰素的抗病性活性提高到108 U/mg,并且比天然-干扰素的贮存稳定性高很多。,“后基因组时代”将是“蛋白质组学时代”,即从对基因信息的研究转向对蛋白质信息的研究,包括研究蛋白质结构、功能与应用及蛋白质相互关系和作用。蛋白质工程就是在对蛋白质结构与功能认识的基础上,对蛋白质人工改造与合成,最终获得商业化的产品。,二、蛋白质工程原理,()原理:由预期的找到相应序列,基因表达(转录和翻译)形成氨基酸序列的多肽链形成具有高级结构的蛋白质行使生物功能,天然蛋白质的合成途径:,蛋白质工程
17、的途径:预期的蛋白质功能出发设计预期的蛋白质结构推测应有的氨基酸序列找到相应的脱氧核苷酸序列酸,蛋白质工程的主要步骤通常包括:(1)从生物体中分离纯化目的蛋白;(2)测定其氨基酸序列;(3)借助核磁共振和X射线晶体衍射等手段,尽可能地了解蛋白质的二维重组和三维晶体结构;,(4)设计各种处理条件,了解蛋白质的结构变化,包括折叠与去折叠等对其活性与功能的影响;(5)设计编码该蛋白的基因改造方案,如点突变;(6)分离、纯化新蛋白,功能检测后投入实际使用。,(一)蛋白质的分子设计与改造 蛋白质工程首先是以蛋白质的结构为基础,通过蛋白质的一级结构、晶体结构和溶液构象的研究,积累了成千上万蛋白质一级结构和
18、高级结构的数据资料,并编制成系统的数据库,得以从中找出蛋白质分子间的进化关系、一级结构和高级结构的关系、结构与功能的关系方面的规律。,蛋白质作为生物大分子是生物化学和分子生物学的研究重点,大量蛋白质被分离纯化,测定了它们的结构、性质和生物学作用。分子生物学有关基因组的研究,也可以用以推测出一些未知蛋白质的结构与功能。采用定位诱变的方法,可以对编码蛋白质的基因进行核苷酸密码子的插入、删除、置换和改组,其结果为分子改造提供新的设计方案。现有的蛋白质是生物长期进化的结果,蛋白质工程则是对生物进化的模拟,按照蛋白质形成的规律,改造蛋白质或构建新的蛋白质。 蛋白质的改造通常需要先经周密的分子设计,然后依
19、赖基因工程获得突变型蛋白质,以检验其是否达到了预期的效果。如果改造的结果不理想,还需要从新设计再进行改造,往往经历多次实践摸索才能达到改进蛋白质性能的预定目标。,(二)蛋白质改造工程举例1水蛭素改造水蛭素是水蛭唾液腺分泌的凝血酶特异抑制剂,它有多种变异体,由65或66个氨基酸残基组成。水蛭素在临床上可作为抗栓药物用于治疗血栓疾病。为提高水蛭素活性,在综合各变异体结构特点的基础上提出改造水蛭素主要变异体HV2的设计方案,将47位的Asn(天冬酰胺)变成Lys(赖氨酸),使其与分子内第4或第5位Thr(苏氨酸)间形成氢键来帮助水蛭素N端肽段的正确取向,从而提高凝血效率,试管试验活性提高4倍,在动物
20、模型上检验抗血栓形成的效果,提高20倍。,2生长激素改造生长激素通过对它特异受体的作用促进细胞和机体的生长发育,然而它不仅可以结合生长激素受体,还可以结合许多种不同类型细胞的催乳激素受体,引发其他生理过程。在治疗过程中为减少副作用,需使人的重组生长激素只与生长激素受体结合,尽可能减少与其他激素受体的结合。经研究发现,二者受体结合区有一部分重叠,但并不完全相同,有可能通过改造加以区别。由于人的生长激素和催乳激素受体结合需要锌离子参与作用,而它与生长激素受体结合则无需锌离子参与,于是考虑取代充当锌离子配基的氨基酸侧链,如第18和第21位His(组氨酸)和第17位Glu(谷氨酸)。实验结果与预先设想
21、一致,但要开发作为临床用药还有大量的工作要做。,3胰岛素改造天然胰岛素制剂在储存中易形成二聚体和六聚体,延缓胰岛素从注射部位进入血液,从而延缓了其降血糖作用,也增加了抗原性,这是胰岛素B23-B28氨基酸残基结构所致。利用蛋白质工程技术改变这些残基,则可降低其聚合作用,使胰岛素快速起作用。该速效胰岛素已通过临床实验。,4治癌酶的改造 癌症的基因治疗分二个方面:药物作用于癌细胞,特异性地抑制或杀死癌细胞;药物保护正常细胞免受化学药物的侵害,可以提高化学治疗的剂量。疱疹病毒(HSV)胸腺嘧啶激酶(TK)可以催化胸腺嘧啶和其它结构类似物磷酸化而使这些碱基3-OH缺乏,从而阻断DNA的合成,杀死癌细胞
22、。HSVTK催化能力可以通过基因突变来提高。从大量的随机突变中进行筛选出一种酶,在酶活性部位附近有6个氨基酸被替换,催化能力20倍以上。蛋白质工程的发展很快,研究工作很多,以上仅介绍了几个例子。蛋白质工程除了用于改造天然蛋白质或设计制造新的蛋白质外,其本身还是研究蛋白质结构功能的一种强有力的工具,它在解决生物理论方面所起的作用,可以和任何重大的生物研究方法相提并论。,天然胰岛素制剂在储存中易形成二聚体和六聚体,延缓胰岛素从注射部位进入血液,从而延缓了其降血糖作用,也增加了抗原性,这是胰岛素B23-B28氨基酸残基结构所致。利用蛋白质工程技术改变这些残基,则可降低其聚合作用,使胰岛素快速起作用。
23、该速效胰岛素已通过临床实验。,科学家积极探索将蛋白质工程应用于微电子方面,如用蛋质工程制成电子元件具有体积小、耗能少和效率高的特点。,鼠人嵌合抗体可以防止机体高度过敏。,tPA(纤维蛋白溶解酶原激活因子):用于溶解血栓块,医疗心肌梗死等。用蛋白质工程将天门冬酰胺改为谷氨酰胺后, tPA在血液中的停留时间大大加长。,何谓蛋白质工程?,在现代生物技术中,蛋白质工程出现得最晚,是在20世纪80年代初期出现的。1983年 “蛋白质工程”这个名词出现后,随即被广泛接受和采用。蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。,三、蛋白质工程的进展和前景,蛋白质工程汇集了当代分子生物学等学科的一些前沿领域的最新成就,它把核酸与蛋白质结合、蛋白质空间结构与生物功能结合起来研究。蛋白质工程将蛋白质与酶的研究推进到崭新的时代,为蛋白质和酶在工业、农业和医药方面的应用开拓了诱人的前景。蛋白质工程开创了按照人类意愿改造、创造符合人类需要的蛋白质的新时期。,
链接地址:https://www.31ppt.com/p-1467206.html