选修12 1.1回归分析的基本思想及其初步应用ppt课件.ppt
《选修12 1.1回归分析的基本思想及其初步应用ppt课件.ppt》由会员分享,可在线阅读,更多相关《选修12 1.1回归分析的基本思想及其初步应用ppt课件.ppt(37页珍藏版)》请在三一办公上搜索。
1、第一章 统计案例,1.1回归分析的基本思想及其初步应用,a. 比数学3中“回归”增加的内容,数学统计画散点图了解最小二乘法的思想求回归直线方程ybxa用回归直线方程解决应用问题,选修-统计案例引入线性回归模型ybxae了解模型中随机误差项e产生的原因了解相关指数 R2 和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果,问题1:正方形的面积y与正方形的边长x之间 的函数关系是,问题2:某水田水稻产量y与施肥量x之间是否 -有一个确定性的关系?,例如:在 7 块并排、形状大小相同的试验田上 进行施肥量对水稻产量影响的试验,得到如下所示的一组数据
2、:,复习:变量之间的两种关系,10 20 30 40 50,500450400350300,发现:图中各点,大致分布在某条直线附近。,施化肥量,水稻产量,散点图,自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。,1、定义:,1):相关关系是一种不确定性关系;,注,2、现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等,例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。,案例1:
3、女大学生的身高与体重,解:1、选取身高为自变量x,体重为因变量y,作散点图:,2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。,3、从散点图还看到,样本点散布在某一条直线的附近,有比较好的线性相关关系。,可以用线性回归直线来y=bx+a来近似刻画它们之间的关系。,根据最小二乘法估计 和 就是未知参数a和b的最好估计,,所以回归方程是,所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为,探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?,探究P4:身高为172cm的女大学生的体重一定是60.31
4、6kg吗?如果不是,你能解析一下原因吗?,答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。,60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。,1.用相关系数 r 来衡量,2.公式:,求出线性相关方程后, 说明身高x每增加一个单位,体重y就增加0.849个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱呢?,例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身
5、高为172cm的女大学生的体重。,案例1:女大学生的身高与体重,解:1、选取身高为自变量x,体重为因变量y,作散点图:,2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。,3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。,我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。,函数模型与回归模型之间的差别,函数模型:,回归模型:,可以提供选择模型的准则,思考产生随机误差项e的原因是什么?,随机误差e的来源(可以推广到一般):1、其它因素的影响:
6、影响体重y 的因素不只是身高 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 x 的观测误差。,函数模型与回归模型之间的差别,函数模型:,回归模型:,线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。,在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。,对回归模型进行统计检验,那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?,假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全
7、落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了。,例如,编号为6的女大学生,计算随机误差的效应(残差)为:,显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。,R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。,如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。,总的来说:相关指数R2是度量模型拟合效果的一种指标。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修12 1.1回归分析的基本思想及其初步应用ppt课件 选修 12 1.1 回归 分析 基本 思想 及其 初步 应用 ppt 课件
链接地址:https://www.31ppt.com/p-1460326.html