管理运筹学最短路实例课件.ppt
《管理运筹学最短路实例课件.ppt》由会员分享,可在线阅读,更多相关《管理运筹学最短路实例课件.ppt(31页珍藏版)》请在三一办公上搜索。
1、.,1,2最短路问题,例 设备更新问题。某公司使用一台设备,在每年年初,公司就要决定是购买新的设备还是继续使用旧设备。如果购置新设备,就要支付一定的购置费,当然新设备的维修费用就低。如果继续使用旧设备,可以省去购置费,但维修费用就高了。请设计一个五年之内的更新设备的计划,使得五年内购置费用和维修费用总的支付费用最小。 已知:设备每年年初的价格表 设备维修费如下表,.,2,2最短路问题,解: 将问题转化为最短路问题,如下图: 用vi表示“第i年年初购进一台新设备”,弧(vi,vj)表示第i年年初购进的设备一直使用到第j年年初。把所有弧的权数计算如下表:,.,3,2最短路问题,(继上页) 把权数赋
2、到图中,再用Dijkstra算法求最短路。 最终得到下图,可知,v1到v6的距离是53,最短路径有两条: v1 v3 v6和 v1 v4 v6,.,4,3最小生成树问题,树是图论中的重要概念,所谓树就是一个无圈的连通图。,图11-11中,(a)就是一个树,而(b)因为图中有圈所以就不是树, (c)因为不连通所以也不是树。,.,5,3最小生成树问题,给了一个无向图G=(V,E),我们保留G的所有点,而删掉部分G的边或者说保留一部分G的边,所获得的图G,称之为G的生成子图。在图11-12中,(b)和(c)都是(a)的生成子图。 如果图G的一个生成子图还是一个树,则称这个生成子图为生成树,在图11-
3、12中,(c)就是(a)的生成树。 最小生成树问题就是指在一个赋权的连通的无向图G中找出一个生成树,并使得这个生成树的所有边的权数之和为最小。,(a),(b),(c),.,6,3最小生成树问题,一、求解最小生成树的破圈算法算法的步骤:1、在给定的赋权的连通图上任找一个圈。2、在所找的圈中去掉一个权数最大的边(如果有两条或两条以上的边都是权数最大的边,则任意去掉其中一条)。3、如果所余下的图已不包含圈,则计算结束,所余下的图即为最小生成树,否则返回第1步。,.,7,3最小生成树问题,例4 用破圈算法求图(a)中的一个最小生成树,图11-13,.,8,3最小生成树问题,例5、某大学准备对其所属的7
4、个学院办公室计算机联网,这个网络的可能联通的途径如下图,图中v1,v7 表示7个学院办公室,请设计一个网络能联通7个学院办公室,并使总的线路长度为最短。,解:此问题实际上是求图11-14的最小生成树,这在例4中已经求得,也即按照图11-13的(f)设计,可使此网络的总的线路长度为最短,为19百米。 “管理运筹学软件”有专门的子程序可以解决最小生成树问题。,.,9,4最大流问题,最大流问题:给一个带收发点的网络,其每条弧的赋权称之为容量,在不超过每条弧的容量的前提下,求出从发点到收点的最大流量。一、最大流的数学模型 例6 某石油公司拥有一个管道网络,使用这个网络可以把石油从采地运送到一些销售点,
5、这个网络的一部分如下图所示。由于管道的直径的变化,它的各段管道(vi,vj)的流量cij(容量)也是不一样的。cij的单位为万加仑/小时。如果使用这个网络系统从采地 v1向销地 v7运送石油,问每小时能运送多少加仑石油?,v5,.,10,4最大流问题,我们可以为此例题建立线性规划数学模型: 设弧(vi,vj)上流量为fij,网络上的总的流量为F,则有:,.,11,4最大流问题,在这个线性规划模型中,其约束条件中的前6个方程表示了网络中的流量必须满足守恒条件,发点的流出量必须等于收点的总流入量;其余的点称之为中间点,它的总流入量必须等于总流出量。其后面几个约束条件表示对每一条弧(vi,vj)的流
6、量fij要满足流量的可行条件,应小于等于弧(vi,vj)的容量cij,并大于等于零,即0fij cij。我们把满足守恒条件及流量可行条件的一组网络流 fij称之为可行流,(即线性规划的可行解),可行流中一组流量最大(也即发出点总流出量最大)的称之为最大流(即线性规划的最优解)。 我们把例6的数据代入以上线性规划模型,用“管理运筹学软件”,马上得到以下的结果:f12=5,f14=5,f23=2,f25=3,f43=2,f46=1,f47=2,f35=2,f36=2,f57=5,f67=3。最优值(最大流量)=10。,.,12,4最大流问题,二、最大流问题网络图论的解法 对网络上弧的容量的表示作改
7、进。为省去弧的方向,如下图: (a)和(b)、(c)和(d)的意义相同。 用以上方法对例6的图的容量标号作改进,得下图,vi,vj,vi,vj,cij,0,(a),(b),cij,cij,vi,vj,(cji),(c),vi,vj,cij,cji,(d),.,13,4最大流问题,求最大流的基本算法(1)找出一条从发点到收点的路,在这条路上的每一条弧顺流方向的容量都大于零。如果不存在这样的路,则已经求得最大流。(2)找出这条路上各条弧的最小的顺流的容量pf,通过这条路增加网络的流量pf。(3)在这条路上,减少每一条弧的顺流容量pf ,同时增加这些弧的逆流容量pf,返回步骤(1)。 用此方法对例6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 管理 运筹学 短路 实例 课件

链接地址:https://www.31ppt.com/p-1454918.html