中级无机化学第四章ppt课件.ppt
《中级无机化学第四章ppt课件.ppt》由会员分享,可在线阅读,更多相关《中级无机化学第四章ppt课件.ppt(174页珍藏版)》请在三一办公上搜索。
1、过渡元素的配合物的成键理论过渡金属化合物的电子光谱过渡元素的磁性,第 四 章,d区过渡元素(I) 配位化合物,二配位配合物的中心金属离子大都具有d0和d10的电子结构, 这类配合物的典型例子是Cu(NH3)2、AgCl2、Au(CN)2等。 所有这些配合物都是直线形的, 即配体金属配体键角为180。 作为粗略的近似, 可以把这种键合描述为配位体的轨道和金属原子的sp杂化轨道重叠的结果。不过, 在某种程度上过渡金属的d轨道也可能包括在成键中, 假定这种键位于金属原子的z轴上, 则在这时, 用于成键的金属的轨道已将不是简单的spz杂化轨道, 而是具有pz成分, dz2成分和s成分的spd杂化轨道了
2、。 在d0的情况下, 金属仅以dz2和s形成ds杂化轨道, 配体沿z轴与这个杂化轨道形成配键, 与此同时金属的dxz和dyz原子轨道分别和配体在x和y方向的px、py轨道形成两条pd键。结果是能量降低, 加强了配合物的稳定性。,4.1 配位化合物的几何构型,4.1.1 低配位配合物,1 二配位配合物,这种配位数的金属配合物是比较少的。,2 三配位配合物,已经确认的如 KCu(CN)2, 它是一个聚合的阴离子, 其中每个Cu (I)原子与两个C原子和一个N原子键合。,Cu(Me3PS)3Cl 中的Cu也是三配位的。,在所有三配位的情况下, 金属原子与三个直接配位的配位原子都是共平面的, 有平面三
3、角形的结构。,并非化学式为MX3都是三配位的。如, CrCl3为层状结构, 是六配位的;而CuCl3是链状的, 为四配位, 其中含有氯桥键, AuCl3也是四配位的, 确切的分子式为Au2Cl6。,一般非过渡元素的四配位化合物都是四面体构型。这是因为采取四面体空间排列, 配体间能尽量远离, 静电排斥作用最小能量最低。但当除了用于成键的四对电子外, 还多余两对电子时, 也能形成平面正方形构型, 此时, 两对电子分别位于平面的上下方, 如XeF4就是这样。 过渡金属的四配位化合物既有四面体形, 也有平面正方形, 究竟采用哪种构型需考虑下列两种因素的影响。 (1) 配体之间的相互静电排斥作用; (2
4、) 配位场稳定化能的影响(见后)。,3 四配位化合物,四配位是常见的配位, 包括 平面正方形和四面体 两种构型。,一般地,当4个配体与不含有d8电子构型的过渡金属离子或原子配位时可形成四面体构型配合物。 而d8组态的过渡金属离子或原子一般是形成平面正方形配合物, 但具有d8组态的金属若因原子太小, 或配位体原子太大, 以致不可能形成平面正方形时, 也可能形成四面体的构型。,4 五配位化合物,应当指出,虽然有相当数目的配位数为5的分子已被确证,但呈现这种奇配位数的化合物要比配位数为4和6的化合物要少得多。如PCl5,在气相中是以三角双锥的形式存在,但在固态中则是以四面体的PCl4离子和八面体的P
5、Cl6离子存在的。因此,在根据化学式写出空间构型时,要了解实验测定的结果,以免判断失误。,5 六配位化合物,对于过渡金属, 这是最普遍且最重要的配位数。其几何构型通常是相当于6个配位原子占据八面体或变形八面体的角顶。,一种非常罕见的六配位配合物是具有三棱柱的几何构型, 之所以罕见是因为在三棱柱构型中配位原子间的排斥力比在三方反棱柱构型中要大。如果将一个三角面相对于相对的三角面旋转60, 就可将三棱柱变成三方反棱柱的构型。,6 七配位化合物,八配位和八配位以上的配合物都是高配位化合物。 一般而言, 形成高配位化合物必须具行以下四个条件。 中心金属离子体积较大, 而配体要小, 以便减小空间位阻;
6、中心金属离子的d电子数一般较少,一方面可获得较多的配位场稳定化能, 另一方面也能减少d电子与配体电子间的相互排斥作用; 中心金属离子的氧化数较高; 配体电负性大, 变形性小。 综合以上条件, 高配位的配位物, 其 中心离子通常是有d0d2电子构型的第二、三过渡系列的离子及镧系、锕系元素离子, 而且它们的氧化态一般大于3; 而常见的配体主要是F、O2、CN、NO3、NCS、H2O等。,4.1.2 高配位数配合物,配位数为14的配合物可能是目前发现的配位数最高的化合物, 其几何结构为双帽六角反棱柱体。,配位数为12的配合物的理想几何结构为二十面体。,4.1.3 立体化学非刚性和流变分子,所谓刚就是
7、坚硬, 意味着不容易发生变化。 在固体时物质中的分子的原子尽管能在其平衡位置不停地振动, 但这个振幅一般不大, 故我们认为它是刚性。 然而在溶液中的分子或离子却可以存在多种激发态。原子的位置能相互交换, 分子的构型发生变化, 这种分子构型变化或分子内重排的动力学问题称为立体化学的非刚性。 如果重排后得到两种或两种以上的不等价的构型称作异构化作用; 如果重排后得到两种或两种以上在结构上是等价的构型, 则称为流变作用。 具有流变作用的分子称为流变分子。,如五配位的化合物一般采取三角双锥和四方锥的构型, 而这两种构型的热力学稳定性相近, 易于互相转化。 PF5在气态时三角双锥的构型。核磁共振研究表明
8、, 所有的F都是等价的。如果F被电负性基团所取代, 则剩下的F位于三角双锥的轴向位置。 如PF3L2, 其中两个F在轴向, 一个F和两个L 在赤道。核磁共振研究表明, 它有两组信号组, 强度为2:1。 但当温度升高到高于100, 则核磁共振的信号变成了一组, 说明轴向和赤道的F迅速交换, 变成等价的了。,这种交换是怎么进行的呢? 在下图中, B平面是轴平面, A平面是赤道平面, 以位于赤道平面的F*作为支点, 保持不动, 平面中的另两个F原子向支点F*原子移动, 使 FPF键角由原来的120增加到180。而轴向的两个F原子在平面B内向离开支点原子F*的方向移动, 键角从180减小为120。这样
9、一来, 原来的两个轴原子为F, 现在变成了赤道原子, 而原来两个赤道原子F现在变成了轴原子, 形成了一个新的等价的三角双锥构型。在重排中经历了四方锥的中间体。,这种机理称为成对交换机理。这种交换产生的新的构型同原来的构型是等价的, 因而是一种流变作用, PF5属于流变分子。,配位化合物有两种类型的异构现象: 化学结构异构 立体异构 化学结构异构是化学式相同, 原子排列次序不同的异构体。包括电离异构、键合异构、配位异构、配位体异构、构型异构、溶剂合异构和聚合异构; 立体异构是化学式和原子排列次序都相同, 仅原子在空间的排列不同的异构体。包括几何异构和光学异构。 一般地说, 只有惰性配位化合物才表
10、现出异构现象, 因为不安定的配位化合物常常会发生分子内重排, 最后得到一种最稳定的异构体。,7.2 配位化合物的异构现象,立体异构可分为几何异构和光学异构两种1 几何异构 在配合物中, 配体可以占据中心原子周围的不同位置。所研究的配体如果处于相邻的位置, 我们称之为顺式结构, 如果配体处于相对的位置, 我们称之为反式结构。由于配体所处顺、反位置不同而造成的异构现象称为顺反异构。 很显然, 配位数为2的配合物, 配体只有相对的位置, 没有顺式结构, 配位数为3和配位数为4的四面体, 所有的配位位置都是相邻的, 因而不存在反式异构体, 然而在平面四边形和八面体配位化合物中, 顺反异构是很常见的。,
11、4.2.1 配合物的立体异构,MA3(BC)D(其中BC为不对称二齿配体)也有面式和经式的区别。在面式的情况下三个A处于一个三角面的三个顶点, 在经式中, 三个A在一个四方平面的三个顶点之上。,MABCDEF型配合物应该有15种几何异构体, 有兴趣的同学可以自己画一下。,M(AB)3也有面式和经式的两种异构体:,2 光学异构,数学上已经严格证明, 手性分子的必要和充分条件是不具备任意次的旋转反映轴Sn。,旋光异构现象 光学异构又称旋光异构。旋光异构是由于分子中没有对称因素(面和对称中心)而引起的旋光性相反的两种不同的空间排布。当分子中存在有一个不对称的碳原子时, 就可能出现两种旋光异构体。旋光
12、异构体能使偏振光左旋或右旋, 而它们的空间结构是实物和镜象不能重合, 尤如左手和右手的关系, 彼此互为对映体。 具有旋光性的分子称作手性分子。,2 溶剂合异构 当溶剂分子取代配位基团而进入配离子的内界所产生的溶剂合异构现象。与电离异构极为相似, 最熟悉的例子是: Cr(H2O)6Cl3 Cr(H2O)5ClCl2H2O Cr(H2O)4Cl2Cl2H2O 它们各含有6、5、4个配位水分子, 这些异构体在物理和化学性质上有显著的差异,如它们的颜色分别为绿、蓝绿、蓝紫。,4.2.2 化学结构异构,结构异构是因为配合物分子中原子与原子间成键的顺序不同而造成的, 常见的结构异构包括电离异构, 键合异构
13、, 配位体异构和聚合异构。,1 电离异构 名词用于描述在溶液中产生不同离子的异构体, 一个经典的例子是,Co(NH3)5BrSO4紫红色和Co(NH3)5SO4Br(红色),它们在溶液中分别能产生SO42和Br。,4 配位异构 在阳离子和阴离子都是配离子的化合物中, 配体的分布是可以变化的, 这种异构现象叫配位异构。如 Co(NH3)6Cr(CN)6和Cr(NH3)6Co(CN)6 Cr(NH3)6Cr(SCN)6和Cr(SCN)2(NH3)4Cr(SCN)4(NH3)2 PtII(NH3)4PtCl6和Pt(NH3)4Cl2PtIICl4 可见, 其中的配位体的种类、数目可以进行任意的组合,
14、 中心离子可以相同, 也可以不同, 氧化态可以相同也可以不同。,3 键合异构 有些单齿配体可通过不同的配位原子与金属结合, 得到不同键合方式的异构体, 这种现象称为键合异构。如 Co(NO2)(NH3)52 和 Co(ONO)(NH3)52 前者叫硝基配合物, 是通过N进行配位的;后者叫亚硝基配合物, 是通过O进行配位的。类似的例子还有SCN和CN, 前者可用S或N进行配位, 后者可用C和N进行配位。 从理论上说, 生成键合异构的必要条件是配体的两个不同原子都含有孤电子对。如, :NCS:, 它的N和S上都有孤电子对, 以致它既可以通过N原子又可以通过S原子同金属相联结。,5 聚合异构 聚合异
15、构是配位异构的一个特例。这里指的是既聚合又异构。与通常说的把单体结合为重复单元的较大结构的聚合的意义有一些差别。如Co(NH3)6Co(NO2)6与Co(NO2)(NH3)5Co(NO2)4(NH3)22 和 Co(NO2)2(NH3)43Co(NO2)6是Co(NH3)3(NO2)3的二聚、三聚和四聚异构体, 其式量分别为后者的二、三和四倍。,6 配位体异构 这是由于配位体本身存在异构体, 导致配合单元互为异构。 如1,3-二氨基丙烷(H2N-CH2-CH2-CH2-NH2)与1,2-二氨基丙烷(H2N-CH2-CH(NH2)-CH3)是异构的配位体, 它们形成的化合物Co(H2N-CH2-
16、CH2-CH2-NH2)Cl2及Co(H2N-CH2-CH(NH2)-CH3)Cl2互为异构体。,7 构型异构 一种配合物可以采取两种或两种以上的空间构型时, 则会产生构型异构现象。如NiCl2(Ph2PCH2Ph)2有四面体和平面四边形两种构型。 常见的构型异构有五配位的三角双锥和四方锥;八配位的十二面体和四方反棱柱体。等等。,2 过渡金属离子是形成配合物的很好的中心形成体。这是因为: 过渡金属离子的有效核电荷大; 电子构型为917型, 这种电子构型的极化能力和变形性都较强, 因而过渡金属离子可以和配体产生很强的结合力。 当过渡金属离子的d轨道未充满时, 易生成内轨型的配合物;如果d电子较多
17、, 还易与配位体生成附加的反馈键, 从而增加配合物的稳定性。,4.3 过渡元素的配位化学,过渡元素具有强烈的形成配合物的趋向。这是因为:,1 过渡元素有能量相近的属同一个能级组的(n1)d、ns、np共九条价电子轨道。按照价键理论, 这些能量相近的轨道可以通过不同形式的杂化, 形成成键能力较强的杂化轨道, 以接受配体提供的电子对, 形成多种形式的配合物。,因而有人说, 过渡元素化学就是d电子的配位化学,显然, 配合物的配位数就是中心原子在成键时动用的空轨道数。,4.3.1 价键理论(VB理论),配合物的价键理论的基本思想是:,配合物是通过给予体和接受体的反应而生成的, 给予体原子具有孤对电子,
18、 它给出孤对电子进入作为配合物中心原子或离子的空轨道, 为了接受这些电子对, 中心原子的原子轨道首先要进行杂化形成一组新的具有一定方向性和对称性的等价杂化轨道, 再与配体的给予体轨道重叠形成配键。如果中心原子还有合适的孤对电子, 而配体又有合适的空轨道, 这时中心原子上的孤对电子将进入配体空轨道从而形成反馈的配键。, 其中n为配合物中的成单电子数, 为配合物的磁矩。,价键理论顺利地解释了配合物的分子构型。,显然, 分子构型决定于杂化轨道的类型:,根据配合物的磁矩可以计算配合物中成单的电子数并由此确定杂化轨道的类型:,例, 实验测得Co(CN)63和CoF63均有正八面体的结构且磁矩分别为0和4
19、.9 B.M.,在Co(CN)63中, Co3中心离子以d2sp3杂化轨道成键, 配离子没有成单电子, 显抗磁性, 为内轨型配合物(也叫共价型配合物)。,在CoF63中, 杂化轨道的类型为sp3d2, 配离子有4个单电子, 显顺磁性, 为外轨型配合物(也叫电价配合物)。,Co 3d74s2:,Co3 3d6:,3 它不能解释化合物的电子光谱跃迁问题。因为没有提到反键轨道;,所谓电价或外轨型配合物是中心离子的电子结构不受配体影响, 保持其自由离子的结构, 给予体电子排布在外层轨道, 中心离子和配体借静电引力结合在一起。而共价或内轨配合物是中心离子的内层d 电子重新排布空出部分轨道参与成键, 中心
20、离子和配体借较强的共价键结合在一起。,现在, 在过渡元素配位化学中VB理论已逐步为配位场理论和分子轨道理论所代替。 这是因为, 价键理论有它不可克服的缺点, 例如:,1 这一理论认为配合物中所有的3d轨道能量均相同, 这是不真实的;,2 3d和4d的能量差较大, 但人为地一会儿用3d, 一会儿又用4d来成键, 至少是不恰当的;,4 应用这一理论时, 有时需要把一个电子激发到较高能级的空轨道, 这样就加进了不切实际的大量能量。,这里, X是一价阴离子的配位体。在此过程中, 自由离子 Cu2要由3d激发一个电子到 4p需要的激发能为1422.6 kJmol1, 看不出这么大的能量从何而来。要补赏这
21、个能量, 必须使CuX键键能至少要达到356 kJmol1, 已知ClCl键键能为243 kJmol1, 这表明, 形成CuCl键放出的能量比形成ClCl键放出的能量还要大, 这可能是不真实的。 根据这个结构, 可以推测Cu2的配合物应当很容易地失去未配对的4p电子而迅速氧化为Cu3, 但事实并非如此。,例如, 为了说明Cu2配合物的平面四方形构型问题, 认为3d电子被激发到4p能级从而发生dsp2杂化。,因此, 价键理论被配位场理论或分子轨道理论 取代是十分必然的。,Cu2,晶体场理论是一种静电理论, 它把配合物中中心原子与配体之间的相互作用, 看作类似于离子晶体中正负离子间的相互作用。但配
22、体的加入, 使得中心原子原来五重简并的 d 轨道(见图)失去了简并性。在一定对称性的配体静电场作用下, 五重简并的 d 轨道分裂为两组或更多的能级组。 这种分裂将对配合物的性质产生重要影响。,4.3.2 晶体场理论,在1929年由Bethe提出, 30年代中期为 Van Vleck等所发展, 与Puling的价键理论处于同一时代, 但当时并未引起重视, 到50年代以后又重新兴起并得到进一步发展, 广泛用于处理配合物的化学键问题。,d 轨道示意图,一 晶体场中d轨道能级的分裂,1 正八面体场,2 正四面体场,相对于正八面体而言, 在拉长八面体中, z轴方向上的两个配体逐渐远离中心原子, 排斥力下
23、降, 即dz2能量下降。同时, 为了保持总静电能量不变, 在x轴和y轴的方向上配体向中心原子靠拢, 从而dx2y2的能量升高, 这样eg轨道发生分裂。在t2g三条轨道中, 由于xy平面上的dxy轨道离配体要近, 能量升高, xz和yz平面上的轨道dxz和dyz离配体远因而能量下降。结果, t2g轨道也发生分裂。这样, 5条d轨道分成四组, 能量从高到低的次序为 dx2y2, dz2, dxy, dxz和dyz。,3 拉长的八面体,设四个配体只在x、y平面上沿x和y 轴方向趋近于中心原子, 因dx2y2轨道的极大值正好处于与配体迎头相撞的位置, 受排斥作用最强, 能级升高最多。其次是在xy平面上
24、的dxy轨道。而dz2仅轨道的环形部分在xy平面上, 受配体排斥作用稍小, 能量稍低, 简并的dxz、dyz的极大值与xy平面成45角, 受配体排斥作用最弱, 能量最低。总之, 5条d轨道在Sq场中分裂为四组, 由高到低的顺序是: dx2y2, dxy, dz2, dxz和dyz。,4 平面正方形场,d 轨道能级在不同配位场中的分裂,表4,二 分裂能和光谱化学序列,分裂能: 中心离子的d轨道的简并能级因配位场的影响而分裂成不同组能级之间的能量差。,分裂能的大小与下列因素有关:,1. 配位场亦即几何构型类型 如t(4/9)o,2. 金属离子,3. 配体的本性 将一些常见配体按光谱实验测得的分裂能
25、从小到大次序排列起来, 便得光谱化学序: 这个化学序代表了配位场的强度顺序。由此顺序可见, 对同一金属离子, 造成值最大的是CN离子, 最小的是I离子, 通常把CN、NO2等离子称作强场配位体, I、Br、F离子称为弱场配位体。,须指出的是, 上述配体场强度顺序是纯静电理论所不能解释的。例如OH比H2O分子场强度弱, 按静电的观点OH带了一个负电荷, H2O不带电荷, 因而OH应该对中心金属离子的d轨道中的电子产生较大的影响作用, 但实际上是OH的场强度反而低, 显然这就很难纯粹用静电效应进行解释。这说明了 d 轨道的分裂并非纯粹的静电效应, 其中的共价因素也不可忽略。,综上, 在确定的配位场
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中级 无机化学 第四 ppt 课件
链接地址:https://www.31ppt.com/p-1441382.html